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Abstract. This paper is concerned with the determination of the distribution of stresses and
displacements in an infinite three-dimensional, linear, elastic, isotropic, homogeneous layer
subjected to concentrated body forces acting upon an arbitrary internal point.

In §2 and §3 the governing partial differential field equations are reduced to a system or
ordinary differential equations by the use of the two-dimensional Fourier transform, taken with
respect to the two in-plane geometric variables (§4). Analytical expressions for the stresses and
displacements are then obtained for the particular case of concentrated body forces, represented
as Dirac delta functions (§5).

The results are subsequently utilized to formulate the multilayered medium problem by means
of transfer matrices. In §8 the typical problem of a non-adhesive layered medium is undertaken.

1. General background

The problem of a single elastic layer in equilibrium has first been considered
by Dougall (1904) [14], who conducted an extensive study of a thick plate
subjected to arbitrary (surface or internal) loading using potential functions.

Multilayered half-space problems have received repeated attention because
of their relevance to the theory of foundations, geotechnical engineering and
composite materials. The well-known Boussinesq (1885) solution to the prob-
lem of a normal static load on the surface of a half-space [1] offers wide
applications to loading problems in geophysics as well as various branches of
engineering. This classic solution was extended to include the problems of
normal static loads acting on the surface of a two and a three-layered
half-space by Burminster (1945) [13] and Pario (1956) [21], of axisymmetrical
loads by Harding and Sneddon (1945) [15,24], and of asymmetrical shear loads
acting on the surface of a thick plate by Muki (1960) [20]. Also Kuo, in 1969
[17], obtained the solutions to the problem of inclined static loads on the
surface of a multilayered medium through the Thomson-Haskell (1953) [16]
matrix method using transfer matrices.

The same problem was later considered by Bufler, who provided a suitable
and systematic matrix formulation in cartesian (1971) [9] and cylindrical
(1974) [11] coordinates by means of two dimensional integral transforms
introduced by Sneddon [23]. Bufler’s papers contain a comprehensive elasto-
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static formulation of the multilayered system in the two-dimensional Fourier
transform domain, but do not provide any information regarding the distribu-
tion of stresses and displacements in a single layer.

In this paper the more general problem of a three dimensional layer
containing arbitrary internal loads is considered. For the specific case of a
concentrated unit load, analytical expressions for the stresses and displace-
ments are obtained in terms of convergent integrals. Representative stress
components are plotted in Figs. 3, 4 and 5. The results are used in the
formulation of the problem of the multilayer medium subjected to both
surface and internal loads.

2. Field equations

The component forms of the balance law and constitutive equations of
homogeneous, isotropic linear elastostatics are

Oy x,x + oxy,y + Oxz,z + F;: = O, (213)
0yxx+0, ,+0,,+F=0, (2.1v)
ozx,x + azy,y + 0’zz,z + 17: = 0’ (21C)
(Q-»)E vE
S A0 —n =t T 0 =20 + 2.2
%= Ta A= 20) T Tar)d—zw) (o Fies) (2.22)
(Q-»)E vE
“dr 1T a a2 + - (22
% Tr A —20) " T W r)a = 2p) Her F te): (2.2b)
(1-»)E vE
= + + , 2.2
% @A -20) " T T a=2) et ) (2.20)
E ‘
=5+ + . 2.2d
% = S gy e FHer) (2:24)
E
o"y = 2(1 + V) (ux,y + uy,x)s (2.2e)
° £ (2.2f)

= — -+ s
yz 2(1 + ll) (uy,z uz,y)

where x, y, z are spatial cartesian coordinates in an Euclidean 3-space;
subscripts indicate components and a comma indicates partial differentiation
with respect to the subscripted variable following it; E, v are the Young’s
modulus of elasticity and Poisson’s ratio respectively; F,, F,, F, stand for the
body force components.

Suitable combinations of the previous expressions, yield the following
equations: From (2.1c),
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from (2.1a), (2.2a), (2.2c) and (2.2¢),
E E E v

O: = T2t T ) T Gl ay) e T Ty e T I
from (2.1b), (2.2b), (2.2¢) and (2.2¢),
0= — e,  — e~ o, .~ 0, ~ F};
zy,z 1—22 27 2(1—») =¥ 214») ¥ 1-—p =y Y
from (2.2f),
2(1+v») )
Yoz o E zy Uy ys
from (2.2d),
U,z = -E(lg—)—ozx = Uy x5
from (2.2¢),
_(Q+)a-22) o )
Mer= T GoNE % T Tyt T T
from (2.2a), (2.2b)~ and (2.2¢),
2y E
L 0y, = T:;ozz + T_—y(ux,x + uy,y);

from (2.2a) and (2.2b),

E .
Oxx — 0yy = 1+ (ux,x - uy,y)’

and from (2.2¢),

E
20,= 155 v(u"'y +u,,).

The first six expressions and the three last ones can be represented in
matrix form as follows:

da
—a—z- =Ada+ C, (23)
b=Ba, (2.4)

where a and b define the column vectors
T
a= (ozz’ Orxs Ozys Uy Uy, uz) >

T
b=(o,+0,,0,—0,, 20,,),

yy?

where ( )7 stands for the transpose of a vector, and matrices the 4 and B are
given by the equations on page 6.
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The column vector C being

C=(-F, -F, -F,0,0,0)".

3. Statement of the problem: Infinite layer

The matrix differential equation (2.3) relates the z-coordinate partial deriva-
tive of vector a with the vector a itself. The vector a is composed of the
components of the tractions acting on a constant-z plane as well as the
components of the displacements.

If x, y are the in-plane coordinates of the layer and z is the coordinate
perpendicular to the faces, the matrix partial differential equation (2.3) can be
transformed into an ordinary matrix differential equation by using the two-di-
mensional Fourier transform with respect to the coordinates x, y.

According to Bufler [9], the following geometric Fourier transforms are
defined:

Ha B)=F 11 N =55 [ [ s (x, ) e ax dy
fle, )=l 1(x, ] = 2# 15, ]

ol 1

f(a’ B) =‘9zﬁ[f(x’ y)] = E‘g-[f(xa y)]’

where

. L _
.]a_llal (a¢0)’ Ja =1 (a O)’
B

jp=iTB_| (B#0); jg=i (B=0),
i=y-1.
The inverse transforms are

F f(a, B)]
f(x, y)=|FEF(a B)]
Z (a, B))

+ + o0 f(a’ B)
= —217 f_ f_ Jof(a, B) | e =x*+B" g4 ap, (3.1)
jsf(a, B)
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and the transforms of the derivatives are given by

37 B
a){ Ialf— ~JaJglel f
o

af

- S

o

8% °

w

B .

0%f !
s

e

o%f

3y IaIIBIf

Here the function f is such that the following conditions are fulfilled
f(x, y)=0 as |x|—>o and |y|—o

Ylx, y) -0 as |x|—>o
ax
ﬁ%’—y—) -0 as |y|— oo.
By the application of the matrix operators
F
F
F F
F= and F' = -F
Zs -7
F
—~F
to (2.3), (2.4) and by using (3.2), these expressions yield
da — =
E =Aa+ C,
b=Ba,
where
a B B a
E=Fa=(6u,6,x,6zy, 4, thy, a) , Fl-u,]

C=FC=

and the matrices 4 and B are given by the equations on page 9.

(3.2)

(3.3)
(3.9)

(3.5a)
(3.5b)

(3.5¢)
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According to Bufler [9], we shall define normalized displacements as u*
*
= ETu,-, where h stands for the thickness of the layer and E* is a reference

Young modulus introduced for normalization purposes to be used in the
multilayered problem. Similarly, the dimensionless transform parameters are
defined as:

a*=|alh, B*=|B|h, A=)a*’+p*2.

Thus, equations (3.3), (3.4) will give

. B
d;z =A4*a*+C, (3.6)

b=B*a*, (3.7)

where the new matrices 4* and B* are given by the equations on page 10,
and the vector @* is given by

« B

% ~ ~ E 2* 7% r
a =(o", O.x> 0, U, Uy, U] ) s

and will be refered to as the state vector.

4. Matrix differential equation

Equation (3.6) is an ordinary matrix differential equation which can be solved
using the Cayley-Hamilton theorem [2].

For an arbitrary point at a distance z from the lower surface of the layer,
the state vector is given by

a*(z) = X(z)X~1(0)a*(0) +X(z)/0’x-l(s)6(s) ds, (4.1)

where a@*(0) represents the initial value of @* at z =0, X(z) is the fundamen-
tal matrix defined by the ‘matrix of eigenvectors of 4™ postmultiplied by the
matrix of eigenvalues of 4* and s is a dummy variable.

a. Matrix of eigenvalues

The matrix of eigenvalues is a diagonal matrix whose elements are the

exponentials of the eigenvalues of 4*. A* has two eigenvalues, 5 and — W
each with a multiplicity order of three. The matrix of eigenvalues is given by
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Ev(z)=

where

A= ar?+ gr2.

b. Matrix of eigenvectors

The columns of this matrix are the eigenvectors of 4*. The first and second
columns and the third and fourth ones are the eigenvectors corresponding to
the first and second eigenvalues, which have a multiplicity order of three. The
fifth and sixth columns are the generalized eigenvectors of the first and second
eigenvalues, respectively,

Fm=[a;], (4.2)

where
E E
a; =0, 012=_2F>‘B*, a;3=0, a14=2F>\B*,
a5 = —ikza*z’ a16= _E'E—;‘-Aza*zs an = _AB*’ Ay = _(X*B*,
E
ap=—fF+AB*, an=gza’B*, 025=E~T(>‘2h+>‘a*22_:32"h)’
E
Ay = %(Azh—ka*zz_ﬂzl’h), an = — Fka*,
E E E
a32=E;"(A2+B*2), a33=E;'Aa*, a34=F(A2+B*2)’
E wiu E g«
a3 == B*(Az+wh), az= ~E*¢ B*(Az—vh),

ag=-2(1+v)a*, as,p=2(1+»)A, agz=-2(1+»)a*,
au=-2(0+v)A, au=Q+r)a*B*z, a,=1+r)a*B*z,
a51=2(1+1’)ﬂ*, a52=0, a53=2(1+1’)B*, as4=0,



Three-dimensional elastostatics of a layer 13
ss=(1+2)[a*2+2(1-»)AR], ass=(1+ »)[a*?z —2(1 - »)AH],
a1 =0, a5=2(1+7r)B* ag=0, ag=2(1+»)B*,
ags=(1+r)a*[Az+2v—-1)/h], ag=—-(1+»)a*[Az+(1- 2v)h].

c. Transfer matrix

This matrix is given by X(z)X~1(0), and relates the state vector @ *(z) of any
arbitrary point z with the initial vector a*(0).
We shall denote it by

T(z) = X(2)X~(0) = —%V)cosh(ki)[t,-j], (4.3)

2(1

where

z z a*[. z z
111—2(1—V)—A71'tanh(Az), tu—“T[}\'}'l"F(l—ZV) tanh(}\;l—)],

fs= — E[Ai +(1-20) tanh()\i—)]

E z z
tyy= — —E— 1 > -;tanh( —)
E

h
hs=~F= 141”}‘“ 'f{‘anh( %) he = E*1+ A[A tanh(A%)]

t21=‘;\—*[}\%-—(1—2u)tanh()\%)], —2(1—v)+——tanh( %)
S RGO R |
,25=§11VA[“;2§+(1_VBA’;2)tanh(xg)],
e ).

w02 wniE]] e )
t=2(1—-»)+ B;Z %tanh()\%)

e Er B2 -0 o]

e B s walh)]
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E 1 z z EX* *z
t36=—E;T+—>\B*—tanh(7\-—), t41=—(1+v)—B>‘—Ztanh()\%),

t42=£E:(1 v) }\2 Z_Xtanh(}‘h)]

- B} {0 unfa)- 22 (i3] 25])
t=2(1—») + B—;—z %tanh(A%)
S ST |
B funls),
- )

tes =—-(1+ )L [h ——tanh(k%)], tee= "‘*f* %tanh(?\%)

tss=2(1-— v)+ Y tanh(?\ )

tys= — 95\'["% +(1-2») tanh(?\%)]
t6l=%(1+v)[%—3—:ﬂtanh(}\%)],
t6=§—*(1+v)%‘t%tanh( 2),

‘ =—(1+p)'g 2 tanh(A2), e [A—-—(l—Zv)tanh( %)]
t65=T[)\Z—(1—2v)tanh(>\%)], t66=2(1—v)—}\71—tanh( )

e. Flexibility matrices

Expression (4.1), with the aid of (4.3), can be written as
a*(z) =T(z)a*(0) + R(z), (4.4)
where R*(z) = X(z)f X"Y(s)C(s) ds.
The state vector a* is composed of stresses and displacements in the
following way

" @= [0
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where
a B T B a T
= —_— p—3 p— = rd —_ 7% 7% Pyl
o(z)=|0,,0,,8,| , a*(z)=|uay, a},u*| .

If we are interested in relating displacements with stresses; e.g. stresses are
known by the boundary conditions of our problem; this can be done using
expression (4.4) in the form:

a(z) T, (z) Ty(2))[ 5(0) I_zl(z)
u*(z) Ty(z) Tp(z) J\a*(0)] |Ry(z)
where T,;(z) (Vi, j=1, 2) stand for the submatrices of T(z) defined in (4.3)
and R;(z) are two column vectors containing the first three and the last three

components of R(z) respectively.
From the former expression,

(ﬁ*(O) ~ T3\ (2) T (z2) T5'(2) )( 6(0))

b

NOVREAOR XOL ZOL O AOLAGHES
~T5'(z)  0\(Ry(2)
~Tu(2)T5'(z) 1)\ Ry(2)) (4.5)

[ Internal point state vector

For an arbitrary point, inside the layer, equation (4.4) holds:
a*(z)=T(z)a*(0) + R(z). ' (4.6)
Also, for z = h, from (4.5) we obtain
7% (0) = — T} (h) Ty (h)5(0) + T (h)&(h) — T3 (h) Ry (k).
Substituting #*(0) from above, into (4.6), we get
( a(z) Ty (2) — Ty (2) T, (R) Ty (R) Ty, (2) T (k) 6(0))

u*(z) Tn(z) = Tu(2) T () Tu(kh)  Tn(2)To'(R) [ 6(h)

Ty, (2) T3 (R R (B) + Ry(z2)
~ Ty (2) T (R)Ry(h) + Ry(2)

, (4.7)

which represents the tranforms of the stresses and ‘displaoements of any
arbitrary point with respect to the transforms of the tractions on the surfaces
and the transform of the applied body forces.



16 F.G. Benitez and A.J. Rosakis

5. Nonhomogeneous system: Layer with concentrated body forces

In this section we shall consider the solution of a layer subjected to con-
centrated forces of unit magnitude acting in an arbitrary direction and applied
to any internal point.

Let £(0, 0, H) be the point where the force is applied and X(x, y, z) be
the point of observation, as depicted in Fig. 1. If 8(x, y, z) stands for the
Dirac delta function defined in the geometric domain. Arbitrary forces in the
three directions will be expressed as
F*=(8(x, y, z—H)e,, 0, O)T, F’= (O, 8(x, y, z—H)e,, O)T,

F*=(0,0, 8(x, y, z— H)ez)T.
The transformed expressions for the body forces are given by

« B
= 1 1 = 11
L - Yy — - — _
F P ja8(z H)e,, F = jBS(z H)ey,

(5.1)
Tz 1 _
F'=5-8(2~H)e,,

where e; is the unit vector in the i-th direction.
By applying, sequentially, expressions (5.1) to the second term of the right
hand side of (4.1) or (4.4), we get
T
il,o,o,o,O) ,
27 Jo

R*(z) =x(z)x-1(H)(o,

Fig. 1. Single layer with unit internal load applied to an arbitrary point. Point X is an arbitrary
internal point.
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ﬁy(z)=x(z)x—1(H)(o, 0, -L1

T
2'”]3’0’090) ’

R*(z) =X(z)X-1(H)(— % 0,0,0,0, O)T,

or see eqns. (5.2a)—(5.2c) on pages 18-19, where the superscript (x, y, z)
denotes the direction of the unit load.

a. Internal point state vector

In this particular case of concentrated body forces, we shall write
(0)=a(h)=0.
It follows from (4.7) that
a(z) _ — Ty, (2) T (h) Ry () + Ry (2)
i*(z) —Tu(2) TR (h) Ry (k) + Ry(2)

for any point z above the load level H (z > H), otherwise the additional terms
R,(z) and R,(z) should be dropped.

Thus, the former expression, for any arbitrary point z, gives

2

5(z) _ — Ty, (2)T5'(R)R (k) + R\ (z) #(z — H) (5.3)
u*(z) ~ T (2)T5 (W) Ry (h) + Ry(2) # (2 - H) | '
with
#-m)={y Gk

b. Analytical expressions for the stresses and displacements

Letting superscripts (x, y, z) denote the direction of the unit load and setting
% =X 5= ¥, we find from equations (3.1), (5.3) and Appendix A that

. _ 1 A=oo AVxZ+ y?

(e 3, = s Lm0 P o, (s4)
where

z=—1__ 4 _ : —

= Sy R {NX( =) siah[AGe- 9]

+ X[ -0 ) cosh[A(x+¥)] + (49 = Dx+ ¥ 1)
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xcosh[A(x —¥)] = x¥ cosh[A(2— x —¥)]]
+ 2 [((4r = 3)x+4(1 - ») — ) sinh[A(x+ ¥)]
+(4(1 —») + x —¢) sinh[ A (x — )]
+((4v—3)x —¢) sinh[A (2 — x — ¥)]
+(¢—x) sinh[A (2 +x —y)]]
~(1 =) [~cosh[A(x +$)] + csh[A(x - ¥)]
+oosh[A(2 -~ x—¥)] —cosh[ A2+ x—¥)]]
+{N(x—¥) sinh[A(x —¥)] =A2(1 —») cosh[A(x —¢)] }

XH(x—¥);
2 _ 1 X A=00 }\Vx2+y2
ozx(x’ y’ Z)— 47’(1_”)}!2 Wfkﬂ fzx(k)‘ll( h )d)\,
(5.5)
where
z —_ ____1— 4 _ —
£50) = Ziy TR (M= 1) coshlA (-]

210 - 200 -9) s MG+ )] + (4= Dx -y + 1)
Xsinh[A(x —¢)] +x¥ sinh[A (2 —x - ¥)]]
_ %[((4,,- 3)x +2(1 — 2») + ) cosh[A(x + ¢)]

+(2(29 1) +x~ ) cosh[A(x — ¥)]
+((3—4»)x — ) cosh[A(2 —x — )]
+(¥=x) cosh[A@ +x—¥)]]

—(@v = 1) 2 [sinh[A(x + $)] + sinh[A(x - )]

+sinh[A(2 —x —¢)] —sinh[>\(2+x—\lf)]]}

+{=N(x—¥) cosh[A(x —¢)] —A(2v — 1) sinh[A(x - ¢)]}
XH#(x—¥);

1 y A= oo A x2+y2
z = z A J dA’
dzy(xa Y Z) 477(1 —V)hz x2+y2 /;‘-0 fzy( ) 1( h
(5.6)
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where
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1 4 —1) cos -
W{AX(\P 1) cosh[A(x ~¥)]

2 =001 - 9) simh[AGx+9)] + (4~ 3)x— 4+ 1)
Xsinh[A(x —¥)] + x¢ sinh[A(2 - x - ¥)]]
- %[((4»— 3)x +2(1—2») +¢) cosh[A(x +¢)]

+(2(2v —1) + x —¢) cosh[A(x — )]
+((3—4v)x— ) cosh[A(2— x — ¢)]
+(¥—x) cosh[A2 + x — ¥)]]

- (@» = 1) [sinh[A(x + )] + sinh[A(x — ¢)]
+sinh[AQ2 ~ x~ )] - sinh[A(2 + x - )]}

+{=N(x—¥) cosh[A(x —¥)] —A(2v—1) sinh[K(x—\P)]}
XH#(x—¥);

1 _ . Ayx? + y?
g ve ,/TJIIA o (A)Jl( )
(5.7)
;{X’x(l—t#)COSh[}\(X—‘P)]
sinh?*(A) — A2

-2 =001 - 9) simb[AGe+9)] + (43— Hx— g +1)
xsinh[A(x — )] +x¢ sinh[A(2 — x = ¢)]]
+ 2 [(@r = 3)x+ 21~ 25) + ¥) cosh A (x + )]

+(2(2» - 1) + x — ¢) cosh[A(x - ¢)]
+((3—4r)x~y) cosh[A2—x—y¢)] + (¢ —x)
xcosh[A(2 +x—¢)]]

~(2v~1)§ [sinb[A(x + ¥)] + sinh[A(x - $)]
+sinh[A(2 = x = ¥)] ~ sinh[A(2 + x = )11}

+{N(x—¥) cosh[A(x ~¥)] —=A(2» — 1) sinh[A(x — )]}
XH#(x—-¥);
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1 A=co AVx2 +y?
oz);(x’ Y Z)= —-__{./;\=0 fle(}\)JO( h

dA
4n(1—»)h?

. -0 A 2 2
+%[[QO (/z’;z(x)+f,§3(>~))fo( L )dx

2_ .2 - [ 2 2
+y—2—x2f: (f;,(%)—f,i,(k))lz( xh+y )dx]},

o0
=0

where

fE(A) = —r

A
o) ()3 leosAGe )] - coshAGx = 9]
—cosh[A(2—x—y)] + cosh[A(2+x — xp)]]}
+{=A2(1 - ») cosh[A(x —¥)] }#(x — ¥),

1 (oD s ~
'Sinh—z(}\)—_p{Ax(tP 1) sinh[A(x —¢)]

fra(X) =
+ X[ = 0 -9) cosh[A(x + )] + ((4p = Hx+ ¥~ 1)
X cosh[A(x — ¥)] — x¥ cosh[A(2 - x —¢)]]
+ "72[((3 —4v)x +4(»—1) + ) sinh[A(x +¥)]

+(4(r—1) —x +¢) sinh[A(x = ¥)]
+((3—4v)x +¥) sinh[A2-x—¥)] +(x—¢)

><sinh[>\(2+x-'¢)]]}

+{N(y—x) sinh[A(x—¥)] }#(x—¥),

and

fa(\) = . {—2(1-v)>\3smh("X) cosh[A(1 — y)] };

sinh?(A) — A2 sinh(A)

oz’;,(x, Vs Z) = o;‘;(z)

1 —xy A=00 A x2+y2
= (M) J dA,
4m(1—v)h? x2+y2-/;\= f5>(A) 2( h

(5.9)



where

HA)=

o (x, y,

where

)=
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0T M- 1) s (A x =)

+ 211 - 001~ ¥) cosh[A(x-+ )] + (4 = D+ ¥ - 1)
xcosh[A(x — )] =¥ cosh[A(2—x - ¥)]]

+ X [(B=4)x+ 4(r = 1) +¥) simh[A(x + 9)]

+(4(v—1) —x+¢) sinh[A(x — ¢)]
+((3-4»)x+¢) sinh[AQ2—-x—¥)] + (x—¥)

xsinh[A(2 + x — )]]2(1 — ») N Sinh("")si";’;?)[\;‘(l —¥)] }

+{N(¢—x) sinh[A(x —¥)] } #(x - ¥),

_ 1 ~y =, A +y?
Tk e e B
(5.10)
.—1_{>\4x(1—\p)cosh[>\(x—4')]
sinh®(A) — A?

=310 -0 - 9) sahlA G 9]+ (@5 = -4+ 1)
Xsinh[A(x — )] + x¥ sinh[A(2 —x —¢)]]
+ X (@9 = x+ 20~ 29) + 9) cosh[A (x + $)]

+(2(2»—1) + x—¢) cosh[A (x — )]
+((3—4r)x—¥) cosh[A2 - x—¢)] + (v —x)
xcosh[A (2 +x—¥)]]

~ (2= 1) [sinh[A(x + $)] + sinh[A(x - ¥)]
+sinh[ A2~ x ~ ¥)] ~ simb[A (2 + x - ¥)]1}

+{N(x—¥) cosh[A(x ~¥)] —=A(2v» — 1) sinh[A(x — ¢)]}
XH#(x—-¥);
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) 1 AYx2+y?
o) (x, y, z)= W{/ f’}l(A)Jo( 7

dA

AYx2+y?

+,[f (fyyz(x)+fyy3(>\))( - )d}\

2 2

L PR, 0 - 2,00) ( T )dkl}’

X +y
(5.11)

where

1
f=

- A
m{(l - V)E[COSh[)\(X +¢)] = cosh[A(x - ¥)]
—cosh[A(2 ~x = ¥)] +cosh[A 2+ x ~ ¥)]1}
+{=A2(1-») cosh[A(x —¥)] }# (x —¥),

y 1 [y - i —_
2.0 = sy (M- D sl (-9l

+21a-00-9) costlA(x+ )] + (0= Ix+-1)
xcosh[A(x —¥)] — x¢ cosh[A(2 — x — ¥)]]
+ %2[((3 —4v)x +4(r —1) + ) sinh[A(x + ¢)]

+(4(r—1) —x +¢) sinh[A(x = ¥)]
+((3—4v)x+y) sinh[A2-x—¥)] + (x—¥)

Xsinh[A(2 + x — ¢)].]>

+{N (= x) sinh[A(x —¥)] } o (x — ¥),

and

£, (A) = 1 {_2(1 — )N sinh(Ax) cosh[A(1 —¢)] }

sinh?(A) — A2 sinh(A)

1+ 1 Ayx? +p?

A=oc0
u (% v, 2)= s v)hE‘/;'Ty_j;=o fy(")Jl( B

dA,

(5.12)



where

L) =

u;(x’ y’

where

L) =

ul(x, y,
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1 (o 1) i _
W{AXW 1) sinh[A(x — ¥)]

= 1= - ¥) cosh[A G+ 9)] + (49 = (x+¥—1)
X cosh[A(x —¥)] — x¥ cosh[A(2 — x —¢)]]
+ 2@~ 3) (¢~ ) sinh[A(x +¥)]

+(8Q2r—1)(»—1) —x +¢) sinh[A(x — )]
+(4v = 3)(¢ —x) sinh[A (2 - x — ¢)]
+(x—¥) sinh[A(2 + x — ¢)]]

+@v=1)(v = D)eosh[A(x-+9)] - cosh[A@2 - x - )]}
+{A(¢ —x) sinh[A(x - ¥)] }#(x — ¥);

1+ A= o0 Ayx? "'y
D= A= )h E WLO A (}‘)Jl( da,
(5.13)
1 N _
SEOT % (PX(# =D simhA(x- )

X[ - 00 -9) coslAGx+9)] + (9= I)(x+¥-1)

Xcosh[A(x —¥)] —xy¥ cosh[A (2 —x —¥)]]

+ 2 [(@9=3)(¥ - x) sinb[A(x + ¥)]

+(B2r=1)(v=1) — x+ ) sinh[A(x ~ )]

+(4r = 3)(y—x) sinh[A(2 - x — ¥)]

+(x— ) sinh[A(2 + x —¢)]]

+@r=1)(r = D)[eosh[A(x +9)] - cosh{A@2 - x - )]}

+ (M=) sish[A(x ~ ¥)] } £ (x — ¥);
1+v» AYx? + y?

)= ai= o)k Ef fO‘)JO( i

daA,  (5.14)
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where

F(h) = Nx(1 =) cosh[A(x —¥)]

70w
sinh?(A) — A2
+ 2[4 3)(1+ x =) simb[A (e 9)] + 1= x)(1 - )
xsinh[A(x +¥)] + x¥ sinh[A(2 - x ~¥)]]

+ %[(2(81}2 —12»+5)+x—y) cosh[A(x —¥)]
+(3—4r)(2—x—¥) cosh[A(x +¥)]

+(3—4»)(x+¢) cosh[A(2~x —¢)]

+(A—x) cosh[)\(2+x-—t,b)]]

+%[(8v2 —12» + 5) sinh[A(x + ¥)]

+(8»2—12» + 5) sinh[A (2 — x — ¢)]

+(4v — 3) sinh[A(x - ¥)] ~ (4v — 3) sinh[A(2 + x-¢)]]}
+{A(x—¥) cosh[A(x —¥)] + (4» — 3) sinh[A(x — ¥)] }
XH#(x—=v¥);

uy(x, y, z) =ui(z)

_ 1+v» 1 —xp pr=oo,, 7\1/x2+y2
" 4n(1-»)h E x2+ 2 oo f,v(}‘)Jz(_—h dA,
(5.15)
where
A )= — 1 [y _ _
fy(}‘)_ sinhz()\)-}@{)\x(‘p 1) COSh[}\(x 1[,)]

+ X [(@r= 1)+ xy ~x- ) sinb[AGe+ 9]
+((2v = 1) + (3 - 4»)(¥ — x)) sinh[A(x — ¥)]
+(2(r 1) +¢) sinh[AQ2 - x —¢)]

+2(v—1) sinh[A (2 + x — ¢)]]

—%[(2(8,;2 —12v+5) +x— ) cosh[A(x — ¥)]

+(3—4pr)(2—x—) cosh[A(x +¥)]
+(3—4»)(x+¥) cosh[A(2—x—¥)]



ui(x, y,

where

L) =

fE(A) =
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+(—x) cosh[A(2 +x —¥)]]

+-}[(8V2 —8v+1) sinh[A(x +¢)]

+(8»*—8v+ 1) sinh[A(2 - x — ¢¥)]

+sinh[A(x —¢)] ~ sish[A(2 + x = ¢)]]
+4(1-»)N COShz(S),;I)h‘(x;\S;l(AX) cosh[A(1 — a[/)]}

+{=A(x—¥) cosh[A(x — )] +sinh[A(x —¥)]} #(x — ¥);

1+ 1| pA=co,, AYx2+yp?
Zng{fho fx3(?\)Jo( ; )dx
+%[ L0z +f,:;(x))fo(" * Y ) ar
2__x2 A= oo . N A x2+y2 ;
e W OBV e )dk}},
(5.16)
1
TR0 KD cosh{A (=)

+ 2= (3-a)(1 +x- ) sinh[A(x—)]

+(1—-x)Q =) sinh[A(x +¢)] +x¥ sinh[A(2— x - ¢)]]
- %[(2(8;:2— 12» + 5) + x — ¥) cosh[A(x — ¥)]
+(3—4r)(2—x—¥) cosh[A(x+y)]

+(3—4r)(x +¥) cosh[A(2 - x - ¥)]

+(¢ —x) cosh[A(2+x - ¢)]]

+3[(8»2— 8y + 1) sinh[A(x + ¢)]

+(8v* — 8v + 1) sinh[A (2 — x — ¢)]

+sinb[A(x ~9)] — sinb[A 2+ x— )]

+{—A(x—¥) cosh[A(x —¢)] + sinh[A(x — ¢)] }#(x — ¥),

1 — 2cosh(Ax) cosh[A (1 —y)]
sinh?(A) — A2 41 =) sinh(A)
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and

fEA) = —

W{(l —»)[sinh[A(x +¢)] — sinh[A(x —¢)]

+sinh[A(2 ~ x —¢)] +sinh[AQ2 + x —¥)]]}
+{—4(1 —») sinh[A(x — ¥)] } £ (x - ¥);

N 1+» 1 A=o0 }\V
uz(x9 y’ Z) 4'”(1 V)h E W/;\ 0 f (A)Jl( )
(5.17)
where
X _ ; 3 _ si _
0= Gy R XA ) sis M- 9]

=2 =0 - ¥) coshlA(x+¥)] + 3= 4)(1 - x— ¥)
x cosh[A(x — )] — x¥ cosh[A(2 — x — ¥)]]

-2 (G- 49)(x-¥) sinh[A(x+ )]
+(82r—1)(r—1) - x +9) sinh[A(x — ¥)]
+(3-49)(x - ¥) sinh[AQ2 - x — )]

+(x—¥) sinh[A(2 + x — ¢)]]

+@v = 1)(v = Dlecosh[A(x + ¥)] - cosh[ A2 - x - 9]}
+{-A(¢—x) sinh[A(x —¢)] } £ (x —¥);

1+ l{f fy,( )JO(}\‘/x2+y2

y = ———
uy(x, Y, z) 4'”(1 V)h E 2 dA

AYx2+ y?

+:[/ (500 + 00 % 5 | ax

12:—;1- (fyl(x) fyz(’\)) ( x2h+y )d}\]},
(5.18)

where

y 1 [y — -
BN = ay e {1 comlA(x -]

+}‘72[—(3—4v)(1 +x —¢) sinh[A(x — ¢)]



f(A) =
and

(A) =

wl(x, y, z

where

()=
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+(1-x)(1 —¢) siph[A(x +¥)] + x¥ sinh[A (2 - x )]
- % [(2(8»2 — 120 + 5) + x — ¢) cosh[A(x — )]

+(3—4r)(2~x—¥) cosh[A(x +¢)]
+(3—4»)(x+ ) cosh[A(2 - x = ¥)]
+(¥—x) cosh[A2 + x —¥)]]
+3[(82% — 8v + 1) sinh[A(x + ¥)]
+(8v% =8y +1) sinh[A(2 — x — ¢)]

+sinh[A(x — ¢)] — sinh[A(2 +X—‘l’)”}

+{=A(x—¥) cosh[A(x —¢)] +sinh[A(x —¥)] }o#(x - ¥),
1 cosh(Ax) cosh[A(1 — \1«)]

sink2(A) — A2 —41 =X sinh(A)
EZ(—;\)—_X" {(Q = »)[sinh[A(x + )] —sinh[A(x - ¥)]

+sinh[A(2 — x —¢)] +sinh[A(2 + x — ¢)]]}
+{—4(1 —») sinh[A(x —¥)] } £ (x — ¥);
1+v»

A=00
)=t (l—v)hEmj; ~o fy(")Jl(

AVx2 + y? )d}\

(5.19)

1 3 .
m{k x(1— ) sinh[A(x - ¢)]

- 210 - 9) cosh[AGx + 9] + (3 - a9)(1 - x - ¥)
xcosh[A(x —¥)] —x¥ cosh[A(2 — x —¢)]]
- 716 =) (x—) sinn[A(x+ )]

+(8(2» = 1)(» ~1) = x +¢) sinh[A(x — ¢)]
+(3—4»)(x—y) sinh[A(2— x - ¢)]
+(x—y) sinh[A(2+ x — ¢)]]

+@r =)= Dleosh A (x +9)] - cost{A 2 - x - 9]}
+{=A(¥—x) sinh[A(x = ¥)]} #(x - ¥).
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Making use of the transformed stresses and displacements given by (5.3)
and by means of the equation (3.7), after performing the inverse transforms in
connection with (3.1) and by using Appendix A, we obtain:

1

8m(1—») K2

)\W)
% |9

4 z
U;x(x’ Y Z)= mazz(xa Vs Z)+

x {(1 + v)j;j)w)\f,f(}\)lo(

2,20 s A 2+ 2
NPT X A=y X"y
+(1 y)x2+y2f 0 Afx(k)JZ( h )dk}’

A=
(5.20)
v o, 1
a5 (%, ¥, 2) = 75 05(x, ¥, 2) + P
A=co. . AYx?+y?
X{(H”)fho J\fy(}\)Jo(———h—)d}\
x2—p% A=oo, AYx2+ y?
+(1—u)xz+y2fA=0 AN B ————] dA),
(5.21)
; _ 1 xy A=oo . AYxZ+y?
oy (%, ¥, 2) = = 4n(1— »)iE %2+ y2 heo }"I’(}‘)Jz( 2 da,
(5.22)

X = 14 x l x
ol v 2= el 167(1—»)'h* (x2 457

x2—~13y2 A= 00 x x A x2+y2
x{(l-v)xz—ﬂyz- M) - 0] J3(—h—) o
- [AIB ) + (=) + 45OV
XJI(@) dA} (5.23)

v 1 X

ox(x’ y’ z)= oz"zr(xﬁ y’ z)+
» 1-» 167(1 —»)’ A2 32 +?

ALY ] 4 25 | an

ch---3y2 A= o0
x2+y? =0

X{(v— 1)
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- [ 300 - Q-0 E0) + 4 0)]
A=0

le(}"xth'yz ) d}\}, (5.24)
X A(x z)=— 1 Y
o (6 2 = 1 e Fo
y2—3x2 A=c x?+y?
e W\ COS RV L BT
+ f:TA[f;i(K) +£5(N) +2£5(V)] A(A x2h+y2 ) d*}, (5.25)
Y o) (x z ! J
b A g, 2)+ 167(1 = »)*h? JxZ+ 2
N 2 Ao AVxZ+y2?
{(V 1)————2+y2.f A £E(N) - 1;2()\)]13( )d)\
_f:owx[(uy) ) = A =2 H0) + 4 (V)]
le(}‘ x2h+y2 ) d}\}, (5.26)
o) (x Y _oX(x z 1 Y
(% —yoln 16m(1 - )’ h? x4+ 2
2_ 2 ] \/x +
><{(1—u)yxz+3y"2 ..f* A fE(N) - fﬂ(}\)]J3( v’ )d)\
[T+ + @ =) M) 4 0)]
le(A—’fzh—’Lfi dx}, (5.27)

1 x
167(1-»)h* [x2 4 52

o;y(x, V> Z)= -

x?—3y? M=o AVx2+y?
x{ x2+y2 heo >‘[fy)i(k) _fyyz(?\)]Ja(: 7 )d?\

+f}\:)°°k[fy{(}\)+j;y2(}\)+2fyy3(}\)].l,()\xh+y )d)\}, (5.28)
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where the f(A) are functions of A, x and v, and they are defined in (5.4) to
(5.19).

The analytical expressions obtained above are given in terms of integrals.
Close inspection of the expressions for the stresses o,,, o,,, 0,,, 0,, (when the
unit load is applied along the x, y or z directions), or o,, and o,, (when the
unit load is applied along the x or y directions), see equations (5.4) to (5.11)
and (5.22) to (5.28), demonstrates that the resulting integrands exist and are
well behaved for every A € [0, o). For A — 0, this was shown by expanding
the integrands in ascending powers of A and proving that the resulting
expressions vanish as A — 0. For A — oo, this was shown by replacing the
hyperbolic functions involved by their equivalent exponential forms and
demonstrating that the limit of the resulting expression, as A — co, vanishes.

On the other hand, analysis of the equivalent expressions for the displace-
ments, (5.12) to (5.19), and for the stresses o,, and o,, (when the unit load is
applied along the z direction), (5.20) and (5.21), showed that although the
integrands involved were well behaved as A — co, they became singular as
A — 0. In fact, expansion of these integrands in ascending powers of A
revealed terms of the form

alx v N+ B(x v A A0 (5.29)

H
W and

where A and B were known functions of x = %, Y =
R _ x*+y? .
%= ——h—-—respectlvely.

The singular behavior of the integrands in (5.12) to (5.21) indicates that the
resulting expressions for the displacements are non-convergent and that the
above solution should be critically reexamined.

¢. Proposed modifications

The construction of the final solution to our problem was suggested by the
observation that simple subtraction of terms of the form

A(x, ¢,%)A'3+B(x, xp,%))\_le_" (5.30)

from the original integrands resulted in integrals, for the displacements and
stresses (o7, and o;,), which were convergent. It should be noted here that
expression (5.30) reduces to (5.29) as A — 0. The inclusion of the multiplying
factor e~» in the A~! term of (5.29) ensures the integrability of the final
expressions for the displacements and stresses.

It was further observed that the functions 4AA™>+ BA~"le~ of the trans-
form variable A = Ja** + B*? represent Fourier transforms of displacements

contributing nothing to the transformed stresses ,,, o,,, 6,,, thus automati-

zy?*
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cally satisfying the zero traction boundary conditions at z = and z = 0. This
was also consistent with the fact that the kernels of the integral expressions
(5.4) to (5.11) for the o,,, g,,, 0, stresses do not involve singular terms as
A—0. o

s Inpddition it was shown that the stress-displacement state vector (4,,, 9.,,

0., U, U, #,)7 corresponding to the transformed displacements AA™>+
B\~ e~ also provides solutions of the transformed governing equations (3.3).

Motivated by the above observations, we propose here a solution con-
structed by simply subtracting singular functions of the form (5.30) from the
integrands of the displacements (5.12) to (5.19). As mentioned above, the
resulting displacements are convergent and give rise to stresses o,,, 0,,, 0,,,
which are identical to the ones in equations (5.4) to (5.11).

In the next section we will present all displacement and stress components
resulting from the modified solution. We shall then formally prove that the
proposed fields satisfy all field equations, boundary conditions and reduce to
the well known solution for a point load in an infinite domain (Kelvin state),
as the point of application of the load in approached.

6. The proposed solution

1 A= o0 }\Vx2+y2
z ’ ’ = zzz )\ ol —————— dA, 6.1
iy 1) = s [ 0 6.)
o/ (x, y,z)= 1 X f}‘=°°f‘ \)J, ——A x4yt da
R dm(1—»)h? 71,7 amo 7T h ’
(6.2)
z _ 1 Yy A-‘X’ZAJ Ax2+y2 dA
B ) R Tyt heo BT O
(6.3)
x( ) 1 —x A=o0 (M) AYx? +y? dx
X, Vs 2)= 2z T 5
Oz Y 477'(1 - V)h2 ”x2 +y2 '[A=0 ! h
(6.4)
. 1 A=oo AVx2+y?
ox(x, y,z)= m{fx-o fm(’\)«’o(—-‘;——) dA

-0 )\ 2 2
+%{f:=0 (52,00 + £2,0) b 257 ) an

2

$ LT P () - ,z,(x))fz(%tl) dx]},

x2+y? =0
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1 —Xy [A=oo Ax? +y?
, (N[ 22 | da,
zy(x Yy ) 47 (1‘-1’)h2x +y y( )2( h
(6.6)
1 -y A= o0 A x2+y2
Y (x. y, z) = 2N | ————] dA,
oy =T ‘/mf>\=o 12 (M) ‘( 2
(6.7)
1 —Xxy A= Ayx? + p?
> (x, y, z) = (NG| 2| da,
ozx(x y Z) 4W(1—V)h2 x2+y2 y( )2( h
(6.8)

2

1 A= oo AVx? +y?
o (x, y, z) = m{fx=o zyl(A)Jo('—h—) dA

2

ﬁ[L (2,00 +2,(0) (i%yz)dA

P x? AYx2+y?
R IR AR LR PA )
(6.9)
1
oy o ) e
‘/ 2 2
x{(1+v)f*=°°xlf;(x)10(”—,fy—
A=0
-1201-)ex- D5 ]d)x
y A=ec0, . A x2+y2
+(1-») +y2j Af(A)JZ(_-h— dA},
(6.10)
e e

X {(1 +v)f>‘x_=o°°>\[fyz(>\)fo(_—}\ x2h+y2 )

—12(1 —»)’(2x - 1) ] da
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2 A = 00 A x2+y2
+(1-») 2+yzf Afy(A)JZ(T)dA}’
(6.11)
1 Xy A=o Ayx? +y?
2 (%, y,2) = - . M| == dA,
o5 (x, ¥, 2) 4z(1—»)h? x> +y* i ) 2( é
(6.12)

1 X

16m(1—»)°h* x>+ y?
2

x{(l-y)"z; 3y2.-j* M) - fxz(x)lfs(xTﬂz) o

X +y2

oi(x, y, z) +

xx(x Y,

_ f:owk[(3 +0) A + Q- v)f5(A) +4£5(0)]
Jl("l"zhjz_) d)\}, (6.13)
1 X

167(1—»)’h? [x2+y?

><{(v—1)x,:z_+3yy22-'fA A0 - ""2(")113(&C’1i)dA

t’z);('x’ Vs Z) +

a5 (%, ¥,

'f:,wxl(l +32)fA(A) — Q=) f5(A) + iS5 (V)]

ANx2+ 2 |
(M52 (€19

1 y
167(1 - »)h? \[x2 42

o;)’(x’ y’ Z)= -

2_ .2 -0 AVx? + 2
X{yxzfﬁ [ A[fxﬁ(x)—fxz(x)lfs(%) dA
A=o0 AYx2+y?
- [0 )+ 20 A B dx}, (615)
¥ 1 Y
2 . }\
{(v—l)y o .-f* A[£A(0) - f,z(x)]13(x—”) da
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_f’ M@+ 3 - A=) RN + arfi(0)]

AVx? +
XJI( hy

d)\}, (6.16)

1 y

oulx . 2) 167(1 —»)*h? \xZ+ 2
)

y
=[G+ B0 + A=) +450)]

A 2+ 2
XJl( s )dx}, (6.17)

x{(1~v)y;13"22..f* A AN - fyz(A)]J3(

1 X
167(1 — »)h? \[y2 +y?

oxyy(x’ Ys z) = -

i

x? +y aa

x{xz; 22 AL -] A 2

X+ y° JA=0

>

+ Ai;“xlf,ﬁ(x)+f;2(x)+2f;3(>\)111( S )dx}, (618)

z 1+» A= o0
ui(x, . 2) = 47(1—1/)th-
AYx? +y? 24(1 - »)?
x{fz’()\)Jo( h - (}\3 2

- [12»(1 —)(x+v—x>—-¢}) + 31 -»)

24,27 -2
2x“+y e
-6 - |5 }dx, (6.19)
(5, 3y )= gtz L x ol gy g (NS
u,(x, y, z 47(1-v)h E /’x_+"y_' =0 x 1 A
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z 1+ 1 A x2+ 2
uy(x, y, z) = 4ﬂ(lt v)h E W /;-o {fy(}‘)Jl( h ; )

—6(1 —»)’ xz;’yz (2x—1)TA} da, (6.21)
N 1+ 1 Ayx? + y?
uz('x’ Vs Z) 4 (l—l')h E \/x+_2 {f; (A)Jl( h )

-6(1—»)2(24/—1)%} dA, (6.22)

x( )_it_v___l.
HxlXo Vs 2] 4r(1—-v)h E

><{f:"-"m{[f"x’(}‘)+%(f"’?(*)Jffx’i(k))] Jo’(A ' )

—(r=1D[6(1—»)(x+¢—2x¥) +2(2r — 3)] eT_"} dA

L1 —Xf (f2) = f2(A) (Aw)d}\}’

2 x +y
(6.23)
1 4 - A i i
u;(x, Y, Z)_ prpe (11-.; V)h é 2':}’ / f; (A)Jz( x h+y ) dA’
(6.24)
, __1+4» 1
uz(X, Y, Z) ar (l_p)hE\/-_—
2 2 -
g e e T
(6.25)

1+» 1 —xy A= AVx?+y?

y = T ;
ul(x, y, z) ar(1-»)h E x2+y2 =0 5 (A)Jz( h ) dA,
(6.26)
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1+v» 1
y = —_—
w2 )= T a ) h E

AYx2 +y?

x{f:ow{[f;,(x) 1RO +20))] JO(T

—(v=-D[6(1—»)(x+¢— 2x¢)+2(2v—3)] }d}\

e WO Z(A))Jz(——“"z”z)dx}-

h
(6.27)

Here the superscipt (x, y, z) indicates the direction of the unit load, x = %

and ¢y = %I- Also note that the f(A), defined in (5.4) to (5.19), are functions of
A, x and 4.

a. Basic features of the proposed solution

In this section we will discuss the characteristic features of the solution
presented above, see expressions (6.1) to (6.27). In particular the following
properties are demonstrated:
i. The expressions for the displacement field, equations (6.19) to (6.27),
satisfy the displacement equations of equilibrium:
E
; +—_ =0
a2 () (x)
§=He,,
vx#§, (6.28)
i, j=x,),2

2(1+ v) s

This can be verified by direct differentiation of the convergent integral
expression for the displacements and substitution into (6.28).

ii. The proposed stress field satisfies the boundary conditions prescribed on
the plate surfaces:

0,,=0,=0,=0 for —}z;=x=0 and %=x=1.
This can be easily seen by inspection of equations (6.1) to (6.9).

iii. The integral of the tractions over the boundary 9C of a cylinder of
arbitrary radius p, p > 0 is equal to minus the point load applied at £ = He,.

Letting

C={(x, y, 2)|x*+y*<p’,0<z<h}
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be the cylinder and
={(x, y, 2) |x*+y*=p?, 0<z <h}

be its cylindrical surface, we see that the above statement is equivalent to

fa-ndA= o-ndd=—F, (6.29)
ac B,

since o -n =0 on the surfaces x =0, x =1 of the cylinder, and F being the
applied point load.

We outline the proof of the above statement in connection with a unit load
applied in the positive z direction. For this case and since n=e,=¢, cos 6 +
e, sin @ on the cylindrical surface, the z component of the left hand side of
(6.29) becomes

27 rh
o[ [ [oix  n=p co5 6+ | -, sin 8] 6 dz. (6.30)
Through use of (6.2), (6.30) can be written as
p ® ()\p) 1,
—_— Ji| 5 A d .
H
where x = h 7—4,

Substitution for fZ(A, x, ¥) from (5.5) yields f 2\ x, $)dx = —20
— ») and (6.31) becomes

P __
- Jl(h) dA= -1,

consistent with the requirements of equation (6.29).

Proofs of the validity of (6.29) for unit loads applied along the x and. y
directions are entirely analogous to the above.

iv. The proposed stress and displacement fields have the property:

a(x)=o(r"?)
u(x)=o(r")

In particular the displacements and stresses of the present solution reduce
to the equivalent ones predicted by Kelvin’s solution, as the point of applica-
tion of the load is approached.

We will outline the proof of the above by making use of a specific stress
component corresponding to a unit load in the positive z direction. The
complete proof for all displacement and stress components for concentrated
loads along any direction is entirely analogous.

} -0, r=(x2+y2+(z ))1/2 0.
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We consider the stress component a7, given in (6.2). As was stated at the
end of Section 5, the integrand f7.(A, X, xp)Jl(A%) of (6.2) is well behaved
for every A €[0, o) and in particular

tim [ 7500 x, A(AF)| -0,

This allows us to replace the integral of (6.2) by its Cauchy principal value:

1 X [ R
= —— X7 (A x, J(A——) da, 6.32
o 4n(1—v)h2R-/>:=0*f (A, x> ¥)4 A (6.32)

where R = (x2+y?)V/2>0, x= %, v= -1’71 and fZ(A, x, ¢) is given in (5.5).

We now choose to replace the hyperbolic functions in (5.5) by their
equivalent exponential forms. By doing so fZ (A, x, §) can be represented as

1
1+ [e™ - (2+4N) e

—R[(1=X)(1 —9)(eAETHY = eAEXD) 4 (4= 3)x— g+ 1)
X (e—R(Z—x+\l«) — e—M2+x—\P)) + x¢(e-h(x+¢) — e-A(4—x-\P))]

fum (D= )2 4 o)

2
- "7 [((4r = 3)x +2(1 — 20) + §)(e X9 4 g=AC+x+¥))

+ (‘P _ x)(e)\(x—\“) + e—k(4+x—\l«))
+(2(2r — 1) + x —¢) (e AE7XHY) 4 7A@ HXH))
+((3 ) x = $)(e XY 4 eAETXT)]

) _ A= _ _
—(21'—1)5[6 AQ=x—¥) _ @7 AQ+x+Y) 4 o= AQ2-x+Y) _ o= A2+x—¥)

e Mx+¥) _ o= A@—x—¥) _ AXx—¥) 4 e—k(4+x—¢)]

2

+ < —(x- 4,)’\_ > [eMX9) 4 g AX=9) 4 g=AU=X+¥) | g=AA+x—¥)
2

—2 e A@=x+¥) _ 9 e—k(2+x+¢)]

+2(x — ¢ )N[eAE X 4 =AC+x=¥)]

- M}\[ek(x—'ﬁ) — e Mx=¥) 4 e~ MA=x—¥) _ g=A@+x—¥)

2
2 e A@x+V) 4 ) eTA@+X-D)]

+ (2(2» — 1)\ [e"rE7x+9) e""(2+"“”]>9f( X— ¢)} . (6.33)
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We first observe that (6.33) involves only negative exponentials in A (the
positive ones, which exist for (x — ¢ /) > 0, cancel out).

Also the factor (1 +[e " —(Q2+4N)e ?*])~! can be expanded in an
infinite convergent series by means of the binomial theorem for every value of
A € (0, c0). This is true since

le~** = (2 + 4A?) e | <1 VAe (0, ),

that is for every A in the range of integration of (6.32).
If the expansion is performed for x >4, the resulting terms can be
expressed as

fz’x()\, X, \p) = &2:_1_)_)\ e—A(x—lﬁ)_ %z(x—tl/) e—x(x—\p)

+terms of the form A" e " *?X~¥¥) yp=1 2 3 ...,

where the p(x — ¥, ) are affine functions of (x — ) and v, such that p >0
Vx, ¥ €[0, 1] and in particular lim, _, , p(x — ¢, ¥) #0.
The stress, thus can be expressed as

1 x({(@r=1) (®, e (~R
= x A eMx "’)J(A—)dA
=T 4 (- )h R{ 7 )y "\

®© R
1 - 2 .= Ax—¥) il
I(X ‘P)'/(;:tx € x Jl(Ah)

+terms of the form [ X" e~ APx—¥: "’)Jl()\—l};s) d}\},
0+
or after integration:

r=_ 1 X
=~ 4n(1-») R

x{(2v—1) R

3
2[R+ (z-H)] 2

R(z—H)
3/2 5/2

[R*+ (2~ H)]

1
+ terms of the form 1 X (n+1)!R/h

8w(1—»)h* R p"*2(x -y, )

n+2 n+3 (R/n)’ )

XF

272 77 pAx—v. ¢)

where F(a, B; v; 8) is the hypergeometric function.
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By letting r=[R*+ (z— H)*]"?, 9= cos_IT = sin"l(

cos'l% = sin‘l—l}%, the above can be written as
, _ cos @ cos @ . 5
o, = 2y —1) — 3 sin
87(1—»)r? {¢ ) id

Z___Ii) and 0 =

42

1
+ terms of the form—> % €5 o (n+ 1.).r/ h
87(1-»)A* p™2(r sin g, ¥)

2 o2
< F n+2’n+3;3; 22r cc')sq) ’
2 2 hp*(rsin g, ¢)
taking the limit as r — 0, and recalling that lim__, o p(r sin ¢, ¢) # 0, we get

cos ¢ cos 8 . 9
ol = 2v—1) = 3sin“p|, r—0.
87(1—»)r? { ) ?l
The above expression is identical to the one predicted by Kelvin’s solution
for a unit concentrated load in the z direction. Proof of the equivalent result
for all other stresses and displacements follows in an entirely equivalent way.

b. Numerical evaluation of the proposed solution

P-3 (x,y,2-H)
A |
z
=0,25
3
. (22
h
1 1
8 .9 f

Fig. 2. Variation of the normalized stress o7,h2/P versus the normalized in-plane distance r’
2, .2
=yx*+y*/h.
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Examples demonstrating some of the features of the three-dimensional solu-
tion are presented in Figs 2, 3 and 4. A point load along the z-direction was
applied at a distance 0.25h from the lower surface of the layer. The variation
of the 6’ componment of the stresses with respect to the normalized in-plane
distance r’ = yx? + y? /h measured from the point of application of the load
is shown for the cases of z=0.95h, z=0.75h, z=0.5k and z=0.3h. As
expected, as r >0 (z— 025h, r’ - 0) the stresses reproduce the singular
behavior of the Kelvin state.

Figures 3 and 4 show the variation of the same stress component along the
thickness of the plate for different values of the normalized in-plane distance

Vx2+y? /h measured from the applied load. At distances close to the load

(see Fig. 4, |x*+y? /h=0.05), the stress changes rapidly from tensile to
compressive as the plane of application of the load (z = 0.25k) is traversed. As
the distance from the load is increased, the tensile portion of the thickness
variation diminishes and eventually disappears. It is also worth noting that for
distances greater that 0.5k the thickness variation becomes symmetrically
shaped despite of the fact that the problem in non-symmetric in the thickness

X 9- P-3(x, y,z—H)\ ; Ih

-8“ Hf'"y """""" — 3

r'=.75£: r=, 50 r.=.25

0) ] i ] 1 l
S 0 -5 -1.0 -1.5 -2.0 -2.5

z 2 /
oh/P
Fig. 3. Variation of the normalized stress o2 h?/P versus the normalized distance x =z/h

measured from the lower surface of the layer. Different curves correspond to r’ = 0.75, r’ = 0.50,
r’=0.25r' =015.
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X z
X

Vo 1Py H)

r=i5

1.

AN I NN NN |

15. 10. 5. 0 5. Z0. 5. -20.
z 2
o, h°/P

Fig. 4. Variation of the normalized stress o2h2/P versus the normalized distance x =z/h
measured from the lower surface of the layer. Different curves correspond to r* = 0.15, r’ = 0.10,
r’ =0.05.

direction, suggesting that the decay length for the three-dimensional Saint-Ve-
nant problem is of the order of half the plate thickness.

7. Multilayered medium

If the system is a multilayered stack composed of N single layers, as shown in
Fig. 5, we may write for the k-th layer:

a¥(z,) = Ti(z) @z (0) + Ry (2:), (7.1)

where T,(z,) is given by (4.3) and E/E™* is replaced by E,/E*.
The initial state vector a; (0) is thus related to the end state vector a*(h;)
through

ag(h,)=T(h)azr0)+R,(h), (72)

where A, is the thickness of the k-th layer.
Matrix T,(z,) has the properties defined in [9]; ie., cross-symmetry,
determinant 1, and for two layers of the same material

T(hy+hy)=T(h)T(h,).
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Fig. 5. System of N layers.

By knowing a;(0), ia¥(z,) is obtained from (7.1); the rest of the compo-
nents can be inferred from (3.7) by

b.(2) = B (2)ak (2,) = B (2,)Ti (2, ) a2 (0) + B2 (2 )Ri(2,), (7.3)
where B* is replaced by B*, v by », and E/E* by E, /E*.

By using (3.1), (3.52) and (3.5b), the stresses and displacements in the kth
layer will be given by

al’:(x, Y, zk) =F_1[51’:(zk)]’ bi(x, y, Zk) =F,_1[i7k(zk)]- (7-4)

a. Method of transfer matrices

In the N-layers stack we can apply the continuity conditions
ag.,(0)=ar(n)=a, (vk=1,2,...,N-1),
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and taking into account the expression (7.2), which now reads

ay="T,ar +R,, (Vk=1,2,...,N), (7.5)
we may obtain

Gt =TyTy_,... T\a¢ +TyTy_y.. LR + --- +TyRy_+ Ry, (7.6)

an equation which relates the six components of the end state vector of the
N-layer system aj(h,) with the six ones of the initial state vector aj(0). In a
well-posed problem, six of these twelve components will be known (all the
stresses, in a problem with natural boundary conditions specified; all the
displacements, in a problem with essential boundary conditions specified;
some of the stresses and some of the displacements, in a problem with mixed
boundary conditions). Once we have solved for the unknowns of system (7.6),
we shall be able to able to obtain the intermediate state vector by using (7.5)
and the rest of stress components by (7.3).

b. Method of flexibility matrices

The continuity condition will read:
uf(he)=ug,,(0)=ur

_ _ _ (Vk=1,2,...,N-1);
0, (h) =06,41(0) =0, } )
and from (4.5)

Zhat) 01 N My, 0
up 5 M, 1
From the above, the following matrix difference equation is obtained:

N1+ (Nopu = N, ,,) 8= Nia,, 81 = My, Ry, ., — My Ry, — Ry,
(Vk=1,2,...,N—1).

R;,
R,,

8. Non-adhesive multilayered medium

In the case where only normal tractions are transferred between layers, the
following conditions hold:

o o 8 -2

0, (h)=06.,(0)=05,(h)=06,,(0)=0 (Vk=1,2,...,N).

From expression (7.2), we can infer a relationship among the displacements
ﬁfk* (0), #;*(0) with the stress o, (0) and the displacement #;;(0). By consider-
ing only the equation relating ,, (%) and % (h,), we can write

iZZ )
E b
k

Ezz(hk) _ All A12 Bll BIZ ich +
ﬁz*(hk) k k R k z

a0
A21 A22 172*(0) k BZl B22 zy

k
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or in compact form

Ar(he) =Te(h) A (0) + R (hy), (8.1)
where R, ; are the components of the vector R, (h,) defined as

R.(n)=(R.., R, R,, R, R,, R)

zy»
where the matrices Z;(h,) and column vectors %,(h,) are given by
Ay On By, Bp R

Ay Ay By Byn| \R

zy

zZX

Ti(hy) = 5 jk(hk)= -

k

>

k

R
R

k k

with the elements A4,; and B;; being

Ay = COSh(}\%) tanh{AZ ) + |1 — tank?(AZ ) [(AZ
u tanh(,‘ )+>\—{ ( h) [ ( h)]( h)}

WSh(A%) A E
e tanh( T) A - B

g - (23] - (35)).

- 23) 2(1>‘—v2) E* it (AZ),
) :

z
o) - 1)
e )
e
e ot TR E i )
e o SR oo )
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Now, the matrix J, is cross-symmetric but generally J (h, +h,)+
T (h1)J (h;), due to the jumps of the displacements #2* and u’e"‘ at the
interlayer surfaces.

Similarly to equation (7.6), the continuity conditions will yield

ix'=-7.N-7—N_l ...Zig'i‘yNyN_l "'%‘QN—I"‘%QI-P )
+ T Ry_y + Ry, (8.2)

Once the unknowns of system (8.2) have been solved, the complete state
vector can be obtained from
R
) ag(0)+ _y) ,
k Ryl

ﬁf*(hk) |l le la la las s

uy* (ki)
where ¢;; are the elements of the matrix T,(h,), given in (4.3) for which
z=h,, v=», and E=E,. Knowing a}(0), the state vector a*(z,) can be
calculated from (7.1), and the rest of the components will be completed using
(7.3). The inverse transforms of the srate vectors are given by (7.4).

Isy Is; ts53 Isq lss Usg
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Appendix A

The stress and displacement functions in the physical space obtained from
(5.3) contain integrals of the following structure:

+oo o+ ,
- [ °°f PF(\) e~ +B) 4o dB, A =h|a? + B2
—o0 Y—o0

Depending on F(A), these integrals can be expressed in cylindrical coordi-
nates as follows:
al. Case F(A)=f(A),

2 Avx +y .
1=22 [ Af(A)Jo(—h—)dA,

a.2 Case F(}\) =af(A),

—27 ix 2 Ayx? + y? .
I= =, zf }\f(A)Jl(—h—-— dA;
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a.3 Case F(A) = Bf(M),

1
I=—

—27iy

—27iy }\\/xz +y2 ) .

A=o0_,
j;=0 }‘f(}\)‘ll(——h—_

a.4 Case F(\) = a*f()),

—o AVx2+y?
== >\3f(>\)10(%)d>\
0

1A

2

2_ 52 2= AYx2+y?
Ty — X" [A=00 4 y
+ == Nf(M)L| ——— | dA;
B* x2+y2f>\-=0 g )2( h )

a.5 Case F(A) = B%f(N),

1= [N () g
0

AYx? +y?
;4- X — dAa

dA;

2_ .2 e A 2+ 2
zy—x pf(k),z(_vxy

T ht xP 4yt heo h

a.6 Case F(A) = aBf(N),

Jo 2T _xy >‘=°°;\3f(}\)J A—W dA
ht x2+y?r =0 2 h '
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