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Abstract—The problem considered here is that of the application of a constant force to an infinite 
three-dimensional, linear, elastic, isotropic, homo^eous layer. This force is assumed to be concentrated 
at any internal arbitrary point. The method of solution is based on the use of integral transforms. The 
distributions of stresses and displacements at all points of the solid are calculated in terms of convergent 
semi-infinite integrals. 

The exact solution of the stress and displacement fields for an infinite plate is obtained when the 
concentrated point load is either close to or distant from the observed point. In the first case the Kelvin 
state solution of the problem of a concentrated load at a point of an elastic medium occupying the entire 
space is recovered. In the second case, the solution of an infinite thin plate is reprodw^. 

In Sec. 3 the governing partial differential field equations, defined in Sec. 2, are reduced to a system 
of ordinary differential equations by the use of the two-dimensional Fourier transform, taken with 
respect to the two in-plane geometric variables. Analytical expressions for the stresses and displacements 
are then obtained for the particular case of concentrated body forces, represented as Dirac delta functions 
(Sec. 5). 

Representative stress and displacement components are plotted in the final section of the paper. 

I. INTRODUCTION 

The problem of a single elastic layer in equilibrium 
was first considered by Dougall in 1904 [1], who 
conducted an extensive study of a thick plate sub
jected to arbitrary (surface or internal) loading using 
potential functions. Teodone [2] also dealt with this 
problem by using the method of mapping. Later, 
Orlando [3] obtained the solution of the layer under 
surface tractions. 

In addition to these works, Lur*e (4,5) proposed 
a method to construct particular solutions of the 
equations of elasticity for a layer subjected to surface 
loads. 

Marguerre's paper [6] contains numerical results 
of the solution of the problem of a layer com
pressed by concentrated forces. Also, Shapiro [7] and 
Sneddon [8J analyzed the distribution of stresses in 
an infinite layer for the case of normal loading, 
uniformly distributed over the area of a circle on 
the surface; this last author also evaluated the stress 
held under an approximation assumption which 
allowed him to obtain a closed-form expression for 
the semi-infinite integrals presented in his work. 

The object of the present paper is to apply the 
transfer matrix formulation, used by Vlasov and 
Leont'ev(9] and generalized by Bufler(10], to the 
problem of a three-dimensional layer containing an 
internal concentrated unit load, which may act per-
Pttidicularly or parallel to the faces of the solid. 

As an initial hypothesis no approximation is 
^sumed except small deformation. 

2. GENERAL EQUATIONS 

The balance law and constitutive equations of a 
homogeneous, isotropic linear elastic body are: 

V-ff(x)-l-F(x) = 0 

ff(x) = ff'^x) (1) 

<^(x) = vE 
(l-l-v)(l-2v) 

E 

[Vn(x)]l 

+ 2(1+v) [VQ(X) + VII(X)1, (2) 

where E and v are Young*s modulus and Poisson's 
ratio respectively, and 9, a and F are defined on a 
spatial region R. 

Suitable combination of the previous expressions, 
in component form, can be presented in the form of 
a matrix differential equation [10-12]: 

^=A. + C 
dz 

b»Ba, 

where a and b define the column vectors 

b " (,^xx "I" ^yy* ~ ̂ yy* ^^xy) » 

(3) 

(4) 

(5) 

(6) 
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X, yt z arc spatial Cartesian coordinates in a 
Euclidean 3-spacc, ( )'" stands for the transpose of a 
vector and matrices A and B are given by 

A = 

0 

V 5 
I- vdx 

V d 
\-vdy 

0 

0 

(H-»)(l-2v) 
(!-»)£ 

d_ 
~dx 

0 

0 

0 

2(1+v) 
E 
0 

£ 
dy 

0 

2(1+v) 
E 

0 

2(1 — v) dx dy 
/ E E e^\ 
\ 2(i + v)5;«:^ l—v'dy*) 

I E d^ E g'\ 
\ 2(l + v)5>'^ 1 — 

0 

0 

» d 
i — vdy 

2(1-v)dxdy 

0 

0 

» d 
I — 

2v 0 E d E d 
1-v 0 l—vdy 1 —v5x 

0 0 0 
E d 

l-^vdy 
E d 

\-¥ydx 

0 0 0 E d 
1+vdx 

E d 
l + v5y 

where 

The column vector C is defined as 

C=(-F,. 0,0.0)^ 

where F,, F^ stand for the body force 
components. 

3. INFINITE LAYEK: TRANSFORMED 
GENERAL EQUATIONS 

The matrix differential eqn (3) relates to the z-
coordinate partial derivative of vector a with the 
vector a itself. The vector a is composed of the 
components of the tractions acting on a constant-z 
plane as well as the components of the displacements. 

If X, y are the in-plane coordinates of the layer and 
z is the coordinate perpendicular to the faces, the 
matrix partial differential eqn (3) can be transformed 
into an ordinary matrix differential equation by using 
the two-dimensional Fourier transform with respect 
to the coordinates x, y. 

According to Sneddon (13] and Buflef[10], the 
following geometric Fourier transforms are defined: 

/(«./J) = i^[/(x.y)] 

1 f + flO 

h, P) = #;[/(*. ;•)] - f [/(X, y)] 
Ja 

/(«. P) - #i[/(x. J.)l - i [/(X.>)]. 
h 

J.-I («=0) 

(P-0) 

i-V-i-

With inverse transform of the form 

I T"*"® f"*"®/ \ 
-51 A/'(3^^) 

U/'feW 
xe-«"*Wda dp, 

and with derivatives of the form 

df i I ^-l«i/=-y.Ai«i/ 

1-1.1/ 

,{ 

0 

0 

0 

£ 
dy 

£ 
dx 



A p^t kwd in the interior of a thick plate 71 

the function / is such that the following conditions where 
are fulfilled: 

/(jr,y)-»0 as |x|->oo and/or |^|-»oo 

df(x,y) • 0 as|x|-»oo 

•0 as|>'|-*oo 

dx 

8/(x,y) 
8y 

By the application of the matrix operators 

« f 2 s - \T 
a — Fa " Upt Ux* 

(lla) 

b = F'a - (ffxx + - [(7« -

C = FC - (-F„ F„ -f,. 0,0, Of. (lie) 

F = 

r 

According to Buflcr(101 we shall define the 
dimensio^ess transform parameters as 

a* = |a|A 

Thus» matrices A and ft are 

» «• 
T^T 

I-y h 

0 

0 

0 

0 

2(1+v) 

~(H.y)(l-2y) 
(l-OF 

£! 
' h 

0 

2(1+ y) 
E 

0 

0 

2(1-v) fc* I-y* \ 2A^ / 
I ,/'2ff*' + Cl-v)«*^ 1 

2h' J 2(1-V) 

0 

y P* 
1—y h I —y A 

2v 
0 0 1-y 

0 0 0 

l-y® A 

J-E^l 
1 + y A 

1 _« E— 0 1-v A 

l + y A 

0 . 0 ® 

to eqns (3) and (4). and hy using (8), these expressions 
yield . 

The vector i will be referred to as the state vector. 

4 MATRIX DIFTERENTIAL EQUATION 

^.Ai+C 
ds 

E-fia, 

Equation (9) is an ordinary matrix differential 
equation which can be solved using the 
Cayley-Hamilton theorem [14). 

(10) For an arbitrary point at a distance r from the 
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lower surface of the layer, the state vector is given by 

i(z)-X(z)X-'(0)i(0) 

+ XCr) j'x-'(j)eC5)dj, (12) 

where a(0) represents the initial value of i at 2 = 0, 
X(r) is the fundamental matrix defined by the matrix 

- of eigenvectors of A postmultiplied by the matrix of 
eigenvalues of A and j is a dummy variable. 

(a) Transfer matrix 
The transfer matrix is given by X(2)X"'(0), and 

relates the state vector a(z) of any arbitrary point z 
with the inital state vector a(0). 

We shall denote it by 

T(Z)SX(2)X-'(0) = 2(1-V) •('0 coshU-to (13) 

where 

/„ = 2(l-v)-A-tanh 
n 

hi 

{'0 

ct*^ z ( r\ 

£ 1 , ^2 
ii 

r„-2(l-v) + ̂ ^?tanh(Ai) 

f« « ̂  (1 + V) J (M} - v)taiib^2 ̂  

a*p*2 J,z\ 

'«-^(I + .)y^tanh(20 

'n - ̂  (i + v) I (M\ - v)tanhrA^) 

-¥K0-'i]> 

-TM'i) 
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'62«£0+*) 

'«3-^0 + v) 

,„.^[,^_0_Zv).anh(Ai)] 

(„ = 2(l-,)-iitaBh^i|). 

(b) Flexibility matrices 
Expression (12), using (13), can be written as 

-Tr2'(^)T„(r) T,V(z) \ 
-i/,Yr Ta(z)Tr2'(^); 

where 

a(2) = T(r)a(0) + R(z), (14) 

R(z) = X(z) |'x-'(5)C(s) dr. 

where Ty(r) (Vi,y = 1,2) stand for the submatrices 
of T(z) defined in (13) and R/(r) arc two column 
vectors containing the first three and the last three 
components of R(z) respectively. 

From the former expression 

/a(o)\ 

J 
VT2,(z)-T2i(z)T,V(z)T„(z) 

xp(0)V Z' -TrAr) OYR,(z)\ 
\m) K-TnizyrrtH^) IARZC^)/ ^ 

(c) internal point state vector 
For an arbitrary point, inside the layer, eqn (14) 

holds: 

i(z) = T(z)i(0) + fi(r). (16) 

Also, for z s A, from (IS) we obtain 

m = - TiV (A)T„ (A)ff (0) + Tr2"(A)a(A) 
-Ta*(A)R,(A). 

Substituting 6(0) from above into eqn (IQ, we 
obtain 

('«(2A |'T„(Z)-T,J(Z)TS'(A)T„(A) T„(z)TrAA)Yff(0)\ /-Tn(z)T5'(A)Ii 
V6(z)/ VT;,(z)-Tj;(z)Trj'(6)T„(A) T„(z)Tr,'(A)A«(*)/ l-T^(z)T5'(A)fi 

-Tn(z)T5'(A)Ii,(A) + R,(z)\ 
,(A) + R;(z);' ^ ' 

which represents the transforms of the stresses and 
The state vector a is composed of stresses and displacements of any arbitrary point with respect to 

displacements in the following way: 

where 

*(«) «= KV, i(z) = (4. 

the transforms of the tractions on the surfaces and 
the transform of the applied body forces. 

5. INfTNTTE LAYER WITH CX>NCENTIIATED 
BODY FORCES 

expression (14) in the form 

(Tn(z) T,:(z)We(0)\ /ft,(z)\ 
\fi(0r>,T2,(z) Tuiz))\m) wz)r 

In this section we shall consider the solution of a 
If we are interested in relating displacements with subjected to concentrated forces of unit mag-

«res«s, e.g. stresses are known by the boundary nitude acting in an arbitrary direcUon and applied to 
conditions of our problem, this can be done using ^^y jntenial point. 

i. {(0,0,/f) be the point where the force is 
applied and x(x, y, z) be the point of observation, as 
depicted in Fig. 1. If ^(x.y.z) stands for the Dirac 
delta function defined in the geometric domain, 
arbitrary forces in the three directions will be 
expressed as 

F"-(5(x,y.z-//)e„0,0)'" 

= (0. d(x,y. z - /f)e,. O)' 

F*=(0,0. i (x,y, 2 - nyty. 

^'8* 1. Single layer with unit internal load applied to an 
•fbitrary point. Point JT is an arbitrary internal point. The transformed expressions for the body forces 

1//' tCCtQH) 
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£ 1 1 P =—-S(2-H)e, 

P = ̂ ls(z-H)t, 
Injn 

2K 
(18) 

where e, is a unit vector in the ith direction. 
By applying, sequentially, expressions (18) to the or 

second term of the right hand side of (12) or (14), we 
obtain 

R'iz) = X(zyK-\H)(^ _±I.O.O.O.O)J 

R^iz) = X(r)X-'(^)^0,0, - 0,0, oj 

R'(z) = X(z)X-'(//)^-^. 0,0.0,0,0J. 

1 
4*(l — v)A;, 

- 2.)»inh[i (i^)] + 

• (19a) 

--(! + »)«• 

*'(z) = 1 
4*(I-»)V^ 

R'{2) 1 
4R(1-V) 

^ .[(1 - 2,)«nh[x (i^)]+i(i^cosh[x 

^ (1 + V) 

2(i^),i„h[2(i^)]-2(1 - v)cosh[2(i^)] 

^ [(1 - 2v)anh[2(i^)] - 2(i^)o<»h[2 

-^(l + Oy (^)«nh[^(i:^)] 
-^(l + v)l[(4v-3)sinh[;(i^)] + ;(£^)cosh[^^ 

(19b) 

(19c) 
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where the superscript (x, z) denotes the direction of 
the unit load. 
(a) Internal point state vector 

In this particular case of concentrated body forces, 
we shall write 

ff(0)=tf(A) = 0. 

It follows from (17) that 

/-T,j(a)Tr2'(A)R,(fc) + R,(z)\ 

for any point z above the load level H H), 
otherwise the additional terms Ri(a) and ^2(2) 
should be dropped. 

Thus, the former expression, for any arbitrary 
point z, gives 

(c(z)\ 

singular as In fact, expansion of these inte
grands in ascending powers of A revealed terms of the 
form: 

whoe A and B were known functions of 

z H ^ R V(Jc'+y^) 

respectively. 
The singular behaviour of the integrands indicates 

that the resulting expressions for the displacements 
are non-convergent and that the above solution 
should be critically re-examined. 
(c) Proposed modifications 

The construction of the final solution to our prob
lem was suggested by the Observation that simple 
subtraction of terms of the form 

/-T,:(r)T,-i'(A)R,(A) + R,(z)jr(r-W)\ J , R\., 
l-TaWTr2'(A)R,W + R2(z)Jf(z-W)j'^ ' (22) 

where 

Vz</f 

(b) Analytical expressions for the stresses and dis
placements 

From eqns (7), (20) and Appendix A, the repres
sions for the stresses and displacements defined in (S) 
can be inferred. Also, making use of the transformed 
stresses and displacements given by (20) and by 
means of eqn (10), after performing the inwrse 
transforms in connection with (7) and by using 
Appendix A, the rest of the stress components will be 
obtained. 

The analytical expressions obtained in that way are 
given in terms of infinite integrals. Close inspection of 
the expressions for the stresses a„, <r„, o,, (when 
the unit load is applied along the x, y or z directions), 
t>r and Cyy (when the unit load is applied along the 
z or y directions), demonstrates that the resulting 
integrands exist and are well behaved for every 
^ ® [0» 00). For 2 -»0, this was shown by expanding 
the integrands in ascending powers of A and proving 
that the resulting expressions vanish as A -»0. For 
^"•00, this was shown by replacing the hyperbolic 
functions involved by their equivalent exponential 
forms and demonstrating that the limit of the 
•bulling expression, as A -»oo, vanishes. 

On the other hand, analysis of the equivalent 
®*presslons for the displacements and for the stresses 

and (when the unit load is applied along the 
^ <^irection), showed that although the integrands 
'uvolved were well behaved as A -^oo, th^ became 

from the original integrands resulted in integrals for 
the displacements and stresses and <7^), which 
were convergent. It should be noted here that expres
sion (22) reduces to (21) as A 0. The inclusion of the 
multiplying factor e"^ in the A term of (21) ensures 
the integrability of the final expresrions for the 
displacements and stresses. 

It was further observed that the functions 
i4A~' + 5A"'e"' of the transform variable 
X — + represent Fourier transforms of 
displaconents contributing nothing to the trans
formed stresses d„, thus automatically satis
fying the zero traction boundary conditions at z A 
and z s 0. This was also consistent with the fact that 
the kernels of the integral expressions for the 
Of, stresses do not involve singular terms as A-»0. 

In addition it was shown that the stress-
displacement state vectors 
corresponding to the transformed displacement 
.4A"' + fiA""'e~^ are also solutions of the trans
formed governing eqns (9). 

Motivated by the above observations, we propose 
here a solution constructed by simply subtracting 
singular functions of the form (22) from the inte
grands of the displacements. As mentioned above, the 
resulting displacements are convergent and give rise 
to stresses Vyy, which are 
identical to the ones obtained directly from eqns (10) 
and (20). 

In the next section we will present all displacement 
and stress components resulting from the modified 
solution. We shall then formally prove that the 
proposed fields satisfy all field equations, boundary 
conditions and reduce to the well known solution for 
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a point load in an infinite domain (Kelvin state), as ^^ ̂  ^ TT^ f 
the point of application of the load is approached. " 4JC(\ - V)A X +y Ji-o 

6. STRESS AND DISPUtCEMENT HELDS ^ \ / 

(2 

I * f^"® 
vo?T?) J.-. 

r-i-co 4./'' 

(r'„{x,y,z)'=' 4n(l 
/^a) 

ai 

1 —X 

An{l-v)h^y/{x^+y') 

(24) 

(2) 

(25) 

(2) 

(26) 

-r Ji-i 

,(2)+/U2)) 

(/^(2)-/^(2)) 

V 1 
ol.ix,y,z)=^j^'r'Ax,y,2) + 

(31) 

8R(1-V)^A' 

aj.(x,;',r) = 4n(l "b^lLo ,(2) x/ 

-I2(I-v)^2x-l)^] d2 

X r""(/J^(2)-y!^(2)) 
Ji.O 

(27) 

xy,(iV(M)d2 

v2_ v2 PA-® 

XJ 

x'+y 

(32) 

V 1 
»?,(*• y- -1"-; "«(*• J-' +8i(i_,)^A' 

:{(l + v)j'""A[/J(A) 
aV(x'+y')\ 

' h ) 

(28) d2 

1 -y 
<rUx,y,z)= ..,,.3 //^2'ly2) •4«(l-v)AV(*^ + >'^ 

(29) 

-12(!-v)^2x-l)—] 

fi-«e 
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! 5-^ 1 A/!(A) + Aiyi;,(A)+/^,(A) + 2/^,(A)] 
4n(l-v)A^]?+7Ji-o ' Ji-c 

z)» ffM*. y.«) 

x/j 

V 

dA (34) x/,^Mf?l±2:!2jd>i| (37) 

y» 2)=y* 

1 
I •* 

"•'iMi-w'AVc^'+y') 

X r""A[/i,(A)-/j2(A)l 
Ji-O 

- P'^AKS+*)/;,(A) 
Ji-O 

+ (I-v)n(A) + 4/M^)] 

f V2_3^2 

: P""AI/J,{A)-/J:(A)] 
Ji-o 

X/3 

(35) 

-r""'A[(I^3v)/;,(A)-(l-y) 
Ji-o 

X/M^)+V;3(^)] 

(38) 

ff^(x,z) « o%ix, y, z) 
a'„ix,y,z) = — c'„ix,y*z) 

' * 
"*"l6ii(l-v)^AV(*'+y') 

X r""At/J,(A)-/M^» 
Ji-o 

xy3(i3^^^)dA 

-r""AKl + 3v)/J|,(A) 
Ji-o 

-(l-v)/i(A) + 4v/i,(A)l 

<^v(*.y,z)- -

I y 
"*"l6n(l-v)^A' y/{x^+y^) 

y^-3x^ 
+ r 

X r""A[/;,(A)-/Ji(A)] 
Ji-o 

-j'^AKB + v)/;,(7)+ (!-») 

X/MA) + 4/J,(A)1 

(36) xy,(M!i^)d3} (39) 

1 y fy'-3jc' 1 X fx^-3y^ 
16»(l-.V.'V(^' + /)l^^ 3'.')= - ,6x(l -v)A' V(x'+/)U-+y 

j""ii/;i(«-/i(«i * j,., 
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Ji-O 

(40) 

»\{x,y,z)^ 
1+v 1 

4«(l-v)A£ 

24(1-vf 
A' 

+ ̂ il~vf-6(l-vY 

Tr (41) 

u'x(x,y,z) = 1+v 1 
4iti\-v)hEy/ix^ + y') 

) 

2)= 

-6(i-,)=Vt±tz!) 
h 

x(2;t-l)-'^ 

1+V I 

d2 (42) 

4«(1-V)/I£V(*2 + /) 

) 

-6(1-,)= 
h 

(U 

1 + v 1 -AT 

(43) 

47t(l -v)A£^(*2+^2) 

- 6(1 - v)^(2)/f - 1) ̂  j d;i (44) 

1 + v If 
4«(1-V)A£|J,.O 

'<|[A('l)+i(/i.(A)+/J,(^))] 

x/ 

-(v-l)(6(l-v)0t+^-2;t^) 

+ 2(2,-3))^|<U 

^2V(x'+y)| 

(45) 

«?(*.3'.2) = 

xy,r'^'". •" 'Id2 

1+v 1 ^y 

(46) 

4«(l-v)A£V(*^ + /) 

-Ch'K^) 
-6(1-V)'(2^-1)5^|<U (47) 

jdA (48) 

1 + v 1 «?(•*.;'» 2) = 
4jt(l-v)A£ 

+/^(2)))/.(iV0^j 

-(v - 1)16(1 - v)(;f +^(f -2jfi^) 

+ 2(2v-3)]^^j(U 

1^2_jj2 plaoo 

V(x^ + /) (49) 

where the superscript (*,y, z) indicates the direction 
of the unit load; 

X/j 

2 

^'V *~T'' 



A point load in the interior of a thick plate 79 

defined in (23)-<49), are functions of X, x and ^ and 
aie defined in [11> 12] and Appendix B. 

(a) Basic features of the solution 
In this section we will discuss the characteristic 

features of the solution presented above, see expres
sions (23)-(49). In particular the following properties 
are demonstrated. 

(a) The expressions for the displacement field, 
eqns (4l)-<49), satisfy the displacement equations of 
equilibrium: 

2(l + v)(l-2v) 2(1+v) 

ij = x,y, z. 

(50) 

This can be verified by direct differentiation of the 
convergent integral expressions for the displacements 
and substitution into (50). 

(b) The proposed stress field satisfies the boundary 
conditions prescribed on the plate surfaces 

for 

-nVsO and -syal. 
h ^ h ^ 

This car) be easily seen by inspection of eqns 
(23)-(3I). 

(c) The integral of the tractions over the boundary 
dC of a cylinder of arbitrary radius p, p > 0 is equal 
to minus the point load applied at { = 

Letting 

C^{{x,y,z)\x^+y^<fiK O^z^h] 

be the cylinder and 

B,«^(x,y,r)|*^-^/«p^ 0<a<A} 

^ its cylindrical surface, the above statement is 
equivalent to 

r cndA" r 
Jac Jsfi 

O'OdA •• -F, (51) 

since on the surfaces x = 0, y = 1 of the 
cylinder, and F is the applied point load. 

The proof was outlined in an earlier paper [2). 
(^) The stress and displacement fields have the 

property: 

e(x)«0(^" 
B(x)-0(r 

In particular, the displacements and stresses of the 
present solution reduce to the equivalent ones pre
dicted by Kelvin's solution, as the point of applica
tion of the load is approached. The proof of the 
above for the specific case of a displacement com
ponent is given in Appendix C. Moreover, in [2] this 
proof is outlined for a stress component. 

The complete proof for all displacement and 
stress components for concentrated loads along any 
direction is entirely analogous. 

(b) Far-field analysis of stress and displacement cont' 
ponents 

The solution defined by expressions (23)-(49) is 
formally satisfactory. However, for some of the ex
pressions, a further integration would enable them to 
lend themselves to an easier physical interpretation. 

In particular, the solution in the present form 
throws no light on the question of the behaviour at 
points whose distance from the applied load is 
large in comparison with the plate thickness. By using 
the integrals defined in Appendix D, the expressions, 
from which singular terms have been subtracted, (32), 
(33), (4l)-(45), (47), (49), are shown to be compost 
of two parts of very different character. The first part 
is a function the value of which decreases as the 
distance from the source increases, while the second 
part is a function of a very simple form. Thus, the 
solution is separated into a local, transitory, or 
decaying part, which fades away from the neigh
bourhood of the applied load, and a permanent, or 
persistent part, which is important in the whole 
domain occupied by the layer. 

ff «(*. y* 2) = y, z) 

|^Vi(A)-I2(l-y)^2x-I)j] 

+ (!-») 

(53) 

r - (x^ + + (2 _ //)2)iA > 0. (52) 

1-v 

+ — 

|^;/;(3)-i2(i-v)'(2z-i)j] 
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x'-'^y 
x/ol 

27tA' ^ 2h 
(54) 

l+v 
4JE(I —V)/IE 

I7h-24(1-vf 
JL' 

'[12v(I-v)(x+i^-X^-^') 

+ ?(l-vfliU(2^)<U 

1+* |{ln^[6(l-,)'^ 4n(l-v)AE 

-l2v(l-v)(x+i/^-z' 

ui(x,y.2) = 

-?0-v)=j-6(l-v)^^| (55) 

sr l+v 
4ji(l-v)A£*ja.o 

x|/KA)-12(l-v)^2/-l)p| 

x7,U~ (U + 3(1-v2) 
27i/iE /? 

1_2A A 2AJ (56) 

4n(l-'V)/iE/tji,o 

12(1-vm |/J(2)-12(l-v)=(2z-l)ij 

u^(x,y,z) 

r/f 
12A-A'"MJ 

l + v -J p-
471(1-v)li£ /! Jj., 

(57) 

|/f(2)-12(l-v)=(2^-l)i| 

r* *1 *1 
[2A h 2h\ 

(58) 

u'x(x,y,z)-
l + v c 4JI(1 - v)hE 

X |(yi,(2) + i(/J,(2)+A(2))] 

-(v-l)[«(l-.)Ct + ̂ -2fl(') 

+ 2(2,-3)liU(2f)d2 
1 — v2 Ti — » 

.,(W!£«2).) 
l+v + ̂ t6(l-v)0E + ̂ -2z*) 

R + 2(2v-3)]In — (59) 

«J(*,3',2) 
l + v -y 

4n(\-v)hE R £ 
|/J(A)-I2(l-v)^-l)i| 

x/,(A-|dA- 3(1-v^) 
2«A^ 

[2* A 2AJ (60) 

4«(1 - v)A£ 

»<|[/';,(^)+5(/J.(^)+/;:2(A))I 

-(v-l)[6(l-v)Ct + ̂ ^-2z^^) 

+ 2(2v-3)]l}4f)di 

2 21 

xJi 

\yi-X^ p-
R l-i 

fy^+y') 
V 

l + v 
4KhE 

. )"1 
[6(i-v)Cc + ̂ -2a:^) 
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IHg. 2. Variation of the normalized stress 9*„h^lP\% the normalized in-plane distance r' ^^{x^+y^)lh. 

+ 2(2v-3)lln^. (61) 

where R = yj{x^ + y^). 
In all of the previous components, the integrands 

of the transitory part exist and are well behaved for 
every 2 e [0, oo). And, in particular, the limit of these 
integrands is null as 2 -»Oand 2 -»oo. The remaining 
components, which have not been considered in this 
subsection, do not contain persistent elements and 
the expressions given by (23)-(31), (34)-(40), (46), 
(48) correspond to the transitory part. 

(c) Numerical evaluation of the solution 
Examples demonstrating some of the features of 

the three-dimensional solution are presented in Figs 
2-4. A point load along the z-direction was applied 
at a distance 0.25 h from the lower surface of the 
layer. The variation of the <r*„ component of the 
stresses with respect to the normalised in-plane dis-

p.8(*,y,2-H) 

^•^•0.25 

r-.50 

3. Variation of the normalized stress v%k^lP vs the 
Jl^'^'talized distance x " ̂ Ih measured from the lower sur-
•see of the layer. Different curves correspond to r'« 0.75, 

r'-0.50. r'-0.25, r'-0.15. 

tance r'= +y^)lh measured from the point of 
application of the load is shown for the cases of 
z = 0.95/r, z^OJSh, z«0.5 A and r=0.3A. As 
expected, as r-»0, (z-»0.25A, r'-»0) the stresses 
reproduce the singular behaviour of the Kelvin state. 

Figures 3 and 4 show the variation of the same 
stress component along the thickness of the plate 
for diffemt values of the normalized in-plane 
distance yj(x^ + y^){h measured from the applied 
load. At distances close to the load (see Fig. 4, 

-f y^)lh — 0.05), the stress changes rapidly from 
tensile to compressive as the plane of application of 
the load (z ~ 0.25 h) is traversed. As the distance 
from the load is increased, the tensile portion of the 
thickness variation diminishes and eventually dis
appears. It is also worth noting that for distances 
greater >han 0.5 A the thickness variation becomes 
symmetrically shaped despite the fact that the 
problem is non-symmetric in the thickness direction. 

P8(x.y.2-H) 

<4 hyp 
Fig. 4. Variation of the normalized stress vs the 
normalized distance y » z/A measured from the lower sur
face of the layer. Different curves correspond to r' * 0.15, 

r'^0.10, r'*"0.05. 
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suggesting that the decay length for the three-
dimensional Saint Venant problem is of the order of 
half the plate thickness. 
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APPENDIX A 
The stress and displacement functions in the physical space obtained from (20) contains integrals of the following 

structure: 

/= f*"" f*"F(A)e-<«'+MdadiJ, with X=hJ(oL^ + p^y, 
J —dO J '00 

depending on F(2), these integrals can be expressed in cylindrical coordinates as 

(A.l)CascF(A)=/(2), 

(A.2)CaseF(2) = a/(2), 

(A.3)CaseF(A) = ̂ f(2), 

7=1 
h' ,Jix^+y 

{A..4)Ow: F(X) = afiX), 

(A.5)CaseF(2) = /iy(2), 

(A.6)CaseF(A) = B^/(A), 

/ 

APPENDIX B 
Expressions for/;(A), defined in (23)-(49), are functions of X, x and It is found (1,2] that they are given by: 

1 f 

+ ((4v + l)cosh(A(j: - ̂)] - C08hlA(2 - x -



- (2» -1) ̂  [anhlAOt + *)1 + sinhl-iOt - *)1 + f )J - atibiX(2 + x 
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+YKC4V - 3)z + 4(1 - v) - )A)sinh[AC( + (fr)l + (4(1 - v) + x - ((')8mhli(x -i^)] 
+ (C4v -3)z -^fr)sinh[^(2-x-^ + i^-Z)sinhl2(2 + * -^)]1 
-(1 - v)^[-cosh[2C( +i^')l + co8h[A0c -^^)]4•coshI2(2-x -((')]-coshtA(2 + x -^)]]| 
+(2^ - fi,)sihh[x(x - n - xKi - v)cosh[;cf - n)jf(x -n 

fliX) = - l)cosh[X(x - - y [(1 - x)(l - iS')sinhl20[ + ^)] 
+((4i> + I)8inh[;0£ -|fr)l +x^ sinhi;(2-x -*)11 
_^[((4, - 3)x + 2(1 - 2v) + ̂ )cosh[2(x + ^)1 + (2(2v -1) + x - f )cosIi[A(x - ̂)I 
+{(3 - 4¥)X - i^)coshlA(2 - x -1*')1 + (if' - z)cosh(A(2 + X -

-*)D| 
+ {-il'(l -•)cosh[lCt -•))-i(2. - DstohPh -•))}J('0[ -•); 

AW) = - Dcoshpct - •)] - y [(1 - i)(l - •)siiih(AO[ + •)] , 

+ ((4v - 3)x - f + !)sinh[A(x -(•)) + Xlfr sinhlA(2 - x - f )1I 
- J [((4» - 3)x + 2(1 - 2y) + ̂ )coshrA(z + *)] + (2(2* -1) + x - f )co8h[A(x - ̂)] 
+ ((3 - 4v)x - ̂)cosh[A(2 - X - ̂)1 + (^ - x)cosh[A(2 + x - f )D 

- (2v - I) ̂  (sinhlACf + ^)1 + sinh[A(x - ̂)] + 5inh[A(2 -x - if')! - 8inh(A(2 + x - ̂)Dj 
+ {-XHx - lfr)cosh(A(x - n - A(2v - l)sinh[A(x - i*f)J)jr(x - n 

+ ((4v - 3)x - ̂ + I)sinhlA(x - ̂)1 + X^ sinhlA(2 - x - ̂)I1 

+ T ~ ~ + ^)coshtA(x + iff)] + (2(2v - I) + x - lf')co8hlA(x - if-)] 

+ ((3-4v)x-^)co8hIA(2-x -!(')] + ((/' -X)coshlA(2+x-^)]] 
-(2v - I)^[sinh[A(x + ^)] + sinh[A(x -(ffM + sinhlAfA-x - lt')]-sinhi;(2 + x -
+ {A^ - ((')co8hIA(x - fit)] - A(2v - i)sinh[A(x - ̂)]}Af(x - fft)-, 

ftxM) = sinh2(X)-A' ~ ^ [co8h[A(x + tf')] - coshlA(x - fjt)] - cosh[A(2 - X - if')] 

+ co8h[A(2 + X - ̂)l]j + {--^2(1 - v)cosh[A(x - flt)]}Jt(x - iff): 

fUiX) - |A*X(^ - l)8inh[A(x - ifr)] + y 1(1 - X)(l - ̂)cosh[A(x + (f)] 

+ ((4v - 3)x + ^ - l)coshtA(x - ̂)J - x^ cosh[A(2 - X - ̂)11 
+ T~ +My- I)+ i/')8inhlA(x + ^)] + (4(v - I) - x + ^)sinhtA(x - if)] 
+ ((3 -4v)x + if')sinhIA(2 - x - ,f)] + (x - il')sinhtA(2 + x - if)]]} 

+ {AHlf' -X)sinhIA(x -^)]|jr(x-if): 

/- (A)- ' [ 2fl ,^,""h(Ax)co8h[A(l-if)n 
' 8inh»(A)-A4 ^ ^ sinh(A) J* 

- I)siiihtA(x-^)l+y [(1-X)(l-*)«>^^ 

+ ((4v - 3)x + * - I)cosh[A(x - *)] - X* cosh(A(2 - x - lf)ll 

+y t((3 - 4f)x + 4(» -1) + ̂ )siiih[A(x + •)] + (4(» -1) - X + if )M0hl2(x " f )J 
+ ((3-4»)x+*)siiihlA(2-x-*)] + (x-lf)sioh(A(2+x-lf)a 
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+ 2(l-v)A» sinh(Aj:)cosh[A(l - <i>)] 
sinh(A) !|+{W-A)« z)siDh[ACt-^)]}jrOf-^); 

^|A*z(I-^)coshlACE-^)l-yI(I-7)(l -f)sinh(AC( +*^)I 

+ ((4v - 3)z - + l)sinh[AO: - + ZlA 8>nh['l(2-Z - ̂(')D 

[((4v - 3)x + 2(1 - 2F) + f)+cosh(A(x + ̂ )1 + (2(2» -1) + Z - ̂•)coshIA(a: - f )1 
4 

+ ((3 - 4v)/ - i/»)cosh[A(2 - Z - ̂)] + (*(' - Z)cosh(A(2 + Z -1^)11 

-(2v - 1)^[sinh[ACt +1^)] + smh[AOi: -i(')l + sinh[A(2sinh(A(2 + x -(^')Il| 

+ {i'Cz - ̂XwshlvlCt - ̂)1--l(2v - DsinhUCz - ̂)l} Jf'Ct - *); 

—ji |(1 - f) ̂  [coshlAQt + ifr)] - coshlAO: - (6')] - cosh[A(2 - Z - (I'M + coshIA(2 + z - (*')D| 

+ {-Z2(l - v)cosh[AOE - f )1) Jt'Cz -n 
sinh^CA) 

= {>1W - l)siiih[A(x - it)] + Y [(I - Z)a -

+ ((4v - 3)z + V" - l)coshIAOt coshlA(2 - x - *)D 

+ T K(3 - 4v)x + 4(v - 1) + ^) + sinh[A(x + (^)] + (4(v - I) - x + (l')sinh[A(x -
4 

+ ((3 - 4v)x + ^)sinh[A(2 - X - ̂)J + (Z - (l')sinh(A(2 + x 

+ (A'C^ - x)siiih[A(r - ^(x - n 
,8inh(Ax)cosbtA(l -^)] 

smb(A) '1' 
l^^zCiA - l)sinh[A(x - (t)]1(1 - Z)0 - ̂)cosh[A(x + *1')] sinh^(A) 

+ (4v - 3)(x + ^ - l)cosh[A(x - ijf)] - X^ coshlA(2 -x - ̂)D 

+ ̂  j(4v - - x)sinh[A(x + ̂ )] + (8(2F -1)(» -1) - x + f )8inhtA(x - if)] 

+ (4v - 3)itlf - x)sinh[A(2 - X- ̂ )] + (Z - ̂)sinh[A(2 + Z - ̂)1] + (2v - l)(v - I)[cosh[A(x + it)] 

- cosh[A(2 - X - 0 )D| + {Hif - Z)s»nl>[^(Z - i> )1) •*'(Z - i')i 

m)' =Z(lA - l)sinh[iOt - ̂A)l -y 1(1 - )f)(l - (>)«)sh[;0! + ̂ )1 

+ (4» - 3)(x + ^ - l)cosh[A(x - ̂)1 - xif coshIA(2 - x - (l')D 

+ ~{i4v -3)(i^ -x)sinhIA(x + it)] + (8(2* - l)(v - 1) - x + i/')sinhIA(x - ̂)1 

+ (4v - 3)(^-X)siiih[A(2 -X - 0)] + (Z - (l')sitthIA(2 + X - (I-)]] 

+ (2» _!)(»-DlcoshtACx+*)]-coshlA(2-x-*)B| + {A(^-X)«inh[A(x-f)I)jr(x-f); 

[A)-A4' A»x(l - ̂)co8hIA(x - (l')l + y ((4v - 3)(! + x - ̂)8inhIA(x - ̂)1 sinhXA) 
+ (I - z)(l - *)sinh[A(x + ^)1 + Z^ sinhtA(2 - x - ̂)D 

+ ^[(2(8v^-I2v + 5) + x-l(')cosh[A(x-^)] + (3-4v)(2-x-lA)cc«hlA(x+^)] 

+ (3-4v)(x + ̂ )cosh[A(2 -X - ̂)1 + (^ - x)cosh[A(2 + X -^)D 
+ -12* + 3)sinh(A(x + ̂ )J + (8»' - 12* + 5)8mh(A(2- x - ̂)1 

+ (4v -3)sinhIA(x -<|')I-(4v -3)sinhtA(2 + x 

+ {Ox - it)cmh[X(x ~ *)!+(4* -3)sinbrA(x - ̂)1) Jf(x - f); 

' sinhXA) - A^ ~ l)co8h[A(x -(A)] + ̂ [((2* - l) + z^ - x - ((')sinh[2(z + ^)] 
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+ ((2» -1) + (3 -4»)(^ - /Wrinhf^O: - d-W+(2(i' -1) + n^)siiihIAa - Z - ̂)1 
+ 2(» - !)8inhIZ(2 + z - [(2(8v' - 12v + 5) + z — ^)cosh[A(z — ^)] 

+ (3-4v)(2-z - f )coshrZO(+^)l + (3-4»)0:+**')cosh{ia-Z-z)cosh(Za + z-*)B 

+ il(8v^- 8v + i)sinh[i(z + iA)l + (8v' - 8* + I)8inhlZ(2-z - ̂ )] + sinh[Z(z -^)1 -smhlZ(2 + z -^)D 

+ 4(1 - Cosh[Z<l - + { - Z(z - ̂^)cosh(2<z -1^)] + sinh[Z(z - (fr)!} Jt(x - f'): 

= - l)cosh|Z(z-^)J+yM3-4»)(l+z 

+ (I - z)(l - ll')siiihlZ(z + 0)1 + z^ sinhIZ(2 -z - 0)D 

- ̂  K2(8v» - I2T + 5) + z - 0)cosh[Z(z - 0)] + (3 - 4»)(2 - z - 0)cosh[Z(z + 0)1 

+ (3 - 4v)Cz + 0)coshlZ(2 - z - 0)1 +(0 - z)cosh[Z(2 + z - 0)D 

+ J[(8v' - 8v + l)sinh[>l(z + 0)1 + (8¥» - 8v + I)8inh[Z(2 - z - 0)1 

+ dnhlZOt - 0)1 -sinhI2(2 + z - 0)ll| + {-2(z - 0)coshIZ(z - 0)] + sinh{Z(z - 0)]} (z - 0); 

/. m = [-4(1 - ,..p«»h(2z)cosh[2(I-0)n \ „ 
sinhHZ)-Z^L i 

/iEi(^) = {(I - v)[sinhIZ(z + 0)] - 8inh[2(z - 0)1 + siiihl2(2 - z - 0)1 + sinhIZ(2 + z - 0)]]} 

+ { -4(1 - v)siiihlZ(z - 0)1) je(x - 0); 

= -0)sinh{2(z -0)]-y[a-z)(I -0)coshIZ(z +0)] 

+ (3-4v)(I-z-0)cosh[2Cz-0)l-z0 coshl2(2-z-0)Il-^[(3-4v)(z-0)sinh[2(z+0)1 

+ (8(2v-I)(¥-!)-z+0)sinh[Z(z-0)] + (3-4¥)(z-0)smh(Z(2-z-0)l 

+ (z - 0)sinhl2(2 + z - 0)11 + (2v - I)(v - I)[cosh[Z(z + 0)1 -C08hlZ(2-z - 0)]]| 

+ {--2(0-Z)sinhl2(z-0)I}jr(z-0); 

/>.U) = 5^p^^:;jp|^'z(0 - l)co8hU(z-0)]+yH3-4y)(l+z-0)sinhU(z-0)] 

+ (1 - Z)(l - 0)sinhl2(z + 0)1 + Z0 sinhIZ(2 - z - 0)1) 

-^l(2(8»»-I2v+5)+z-0)coshI2(z-0)J + (3-4¥)(2-z-0)co8hIZ(z+0)1 

+ (3 - 4v)(z + 0)cosh[2(2 - z - 0)1 + (0 - z)coshI2(2 + z - 0)11 

+ i[(8v' — 8* + l)sinh(Z(z + 0)]+(8»' — 8» + l)sinh[Z(2 - z — 0)1 +siiihI2(z - 0)] 

- sinhI2(2 + z - 0)ll| + {-A(z - 0)cosh[A(z - 0)1 + 8inh(2(z - 0)1} Jf (z - 0); 

f'M- ' r 1(1 ,.p«'^h(Az)cosht;(i-0)n. 
8iiih^(A)-A^[ sinhCA) J 

- v)[sinh[A(z + 0)1 -8inhlA(z - 0)1 + sinh[A(2 -z - 0)1 + sinh[AC2 + z - 0)11} 

+ (-4(1 - ¥)smh(A(z - 0)1} Jr(z - n 

~ - 0)1 - YK* - Z)(* -0)cosh[A(z + 0)1 
+ (3_4¥)(I -z -0)cosh[A(z -0)1 -z0 «»htz(2-z -0)11 

-^[(3-4v)(z-0)sinh[A(z + 0)] + (8(2v-I)(y-I)-z + 0)sinhlA(z-0)] 
4 

+(3 - 4v)(z -0)sinh[AC2 - z - 0)1 + (Z - 0)sinhlA(2 + z - 0)D + (2* - l)(v - l)(co8h[A(z + 0)1 

-coshrA(2 - z - 0)ll| + {-2(0 - z)»inhIA(z - 0)1} JC(z - 0): 
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where 

APPENDIX C 
In this appendix the proof of the property expressed by (52) is outlined by making use of a spedfic displacement 

componat corre^nding to a unit load in the poative y direction. 
We consider the displacement component ii^ given in (49). As it was stated in the end of Sec. 5. the integrand 

of (49) are well behaved for every X e [0, co) and in particular 

;im{l/;,(i) + i(/;,(i)+/;,(^))]y„(A^)-.4^}-0 

hm (/;(A) -f "„{}.)) j - 0. 

This allows us to replace the integral of (49) by its Cauchy principal value; 

X/„ j - (V - 1)[6(1 - v)(z + - 2;r^) + 2(2y - 3)1 dA 

where 

A=(;c'+p')"^>0, x=\, ^=j, 

and 

A~(v- 1)[6(I -y)(x+^-2x^) + 2(2v -3)]. 

The expressions for/J,(A),/J,(A),/J,(A) are given in Appendix B. 
We now choose to replace the hyperbolic functions in/;,(A),/J,(A),/j;(A) by their equivalent exponential forms. By 

doing so, these can be represented as: 

+ (3-4v)(^if - z -l)(e"**-*+'^»-e'^'+'"*0 + XlKe"''^*''''~e"**~*-")] 

-^[(2(8v^-12v+5) + z-l/')(e-'"-'+*' + e-^^-^'-*') + (i^-:t)(e^"*' + e-***'-*') 

+ (3-4v)(2-)r-(^)(e-«-*-« + e-*+'+«) + (3-4v)C[ + ̂ )(e-*'+« + e-*«-'-«)] 
+ j[(8v'-8v + l)(e'*^-*-*>-e-*'*'**>+e-^+«-c-**-*-«) + e-*^-**« 

-2c-*^-*+«-2e-*'*'-*>l + 20r-^)A'[e-«-*+«+e-«**-«I 

-2AUe-«-«*«-e-«*«-«|^*'(;f _^)j (C2a) 

+ e^-*>-e-^<+i-*>] + <-2(I-v)Ic^-*>-e-^-« + e-^^-'**'-e-'^^+'-« 
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We first observe that (C2) involves only negative exponentials in X (the positive ones, which exist for Ct -<!')> 0, 
cancel out). Also the factors (1 + (e"*^ - (2 + 4/l^)e-"D-' and (1 - e"")"' can be expanded, in an infinite convergent series, by means 
of the binomial theorem for every value of 2 e (0, oo). This is true since 

|e-«-(2 + 42^)e-"|<l. |e-"l< 1, V2 6(0,a3), 

that is, for every X in the range of integration (CI). . . j 
If tte expansion is performed, for instance x > the resulting terms can be expressed as: 

• «2 

• •e 
The displacement thus can be expressed as: 

where p-Cr - *lf, ^), V» - 1,2,3,... Vn « 0,1,2,..., are linear functions of Of - «A) that p„(z — tf". tJ') > 0 Vz. 
^€[0,1] and in particular Um,^^p.(z-*.^)s'0. Also a,,. Vi - 1,2,3,. ..Vn-0,1.2,.... are linear functions of z 
and 

Letting 
r=I*2+(z_H)i]W 

9«cos ' —= sin 'I—-—I 

, X . ,y 
6 =cos~ — -sin '—, R R 

and taking the limit of the above as r-»0, it becomes lira,_o/'(^®'t^,^^')#0, and 

"!- -4V) + COS= ^ ei + £ ^»• 

The above expression is identical to the one predicted by Kelvin's solution for a unit concentrated load in the z direction. 
Proof of the equivalent result for all other stresses and displacements follows in a similar manner. 

APPENDIX D 

Two integrals which ate of great importance in the previous analysis are the following: 

Wfferentiating (D2) with respect to R, the following integral is obtmned: 

JOL\A/ JA> 4A 2A 2A 


