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Abstract. The jump conditions arising in the formulation of dislocation problems in finite 
elastostatics are discussed and a full field solution of the anti-plane shear type is given for the 
screw dislocation problem. The solution is valid for the most general homogeneous isotropic 
incompressible nonlinear elastic solid. The level of nonlinearity is defined for this solution and 
compared to "dislocation core" estimates in materials science. 

I. Introduction 

Full field solutions for both screw and edge dislocations are well known in 
linearized elastostatics (e.g., Hirth and Lothe [1]). The displacement gradi- 
ents arising in these grow unboundedly as the dislocation line is approached, 
in contradiction to the assumption of  infinitesimal deformations. 

It is often desired to establish the extent to which the solution of  the 
linearized problem provides a good approximation to that of  the fully 
nonlinear elastostatics problem. So far this has been attempted by requiring 
the norm of the infinitesimal strain tensor field to be less than a given positive 
number, small compared to unity, and identifying the domain in the body 
where this condition holds. This approach of  using linear solutions to 
establish the extent of  nonlinear zones is justified only in the absence of  a 
solution to the fully nonlinear problem, for lack of  alternatives. A number 
of studies attempt to produce improved estimates of  nonlinearity present in 
the deformation fields due to dislocations. Some of them, making use of  
second order elasticity theory are reviewed by Teodosiu [2]. On the other 
hand, Seeger and Wesolowski [3] consider a screw dislocation in a com- 
pressible material and give approximate results concerning small displace- 
ments superposed on a large deformation, for a particular material. 

Other investigations employ a type of  theory where the stress deformation 
relations are nonlinear, but the displacement gradients are still assumed 
small, as in the deformation theory of  plasticity. 
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In particular Kachanov, [4] solves the screw dislocation problem in an 
infinite medium, while Champion and Atkinson [5] consider such a dislo- 
cation in a half-space and its interaction with the boundary. 

Kachanov demonstrates that the displacement field which is the solution 
of  the linearized problem also satisfies the problem posed in terms of 
displacements for a "physically nonlinear" elasticity theory. However, 
in both Kachanov [4] and Champion and Atkinson [5] the unbounded 
displacement gradients arising still contradict the kinematic assumptions 
and the question of  validity of  these solutions still remains. 

In the present work (Section 2) we review some preliminaries from the 
equilibrium theory of  finite anti-plane shear for incompressible hyperelastic 
isotropic bodies. In Section 3 we discuss the formulation of  the jump- 
conditions appropriate to the general dislocation problem in finite elasto- 
statics. Here we adopt the approach proposed by Teodosiu [2] for the 
displacement jump conditions. To complete the formulation we propose 
certain additional conditions on the tractions, arising from basic equilibrium 
considerations. From these we derive some results pertaining to the smooth- 
ness of the deformation and stress fields, which are analogous to the ones 
arising in the infinitesimal theory of  Somigliana dislocations, as discussed in. 
Teodosiu [2]. 

The problem of an infinite straight screw dislocation is posed in Section 
4, in the context of  the previous section. Here we consider a finite defor- 
mation of anti-plane shear type. This choice restricts the applicability of the 
results to large deformation of  incompressible materials, since the corre- 
sponding equilibrium equations for compressible materials are not in gen- 
eral satisfied. We provide a full field solution for arbitrary incompressible 
isotropic materials. The corresponding displacement field is shown to coin- 
cide with the one predicted in the infinitesimal theory. However, the stress 
field depends strongly on the particular choice of constitutive law and it 
exhibits strong nonlinearities which are not evident in any of  the studies 
where infinitesimal deformations are assumed (e.g. [4] and [5]). 

In Section 5 we consider the stored strain energy associated with the fields 
obtained in Section 4, and compare it with expressions derived from the 
linear theory. The stored energy is found to depend on the choice of the 
particular elastic potential (strain energy density) function adopted in the 
constitutive law and is given by an integral which is improper if the dislo- 
cation line is included in the region of  integration. A specific choice of the 
constitutive law, however, gives rise to bounded stored energy in contrast to 
the linear theory. 

This particular constitutive model exhibits bounded shear stresses at any 
amount of shear. By a suitable choice of  certain parameters one can adjust 
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the maximal stress to correspond to the amplitude of  stress assumed in the 
Peierls model of  a dislocation (Hirth and Lothe [1]). It is interesting to note 
that the resulting stored energy expression from finite elasticity theory comes 
remarkably close to that of  the Peierls energy. 

On the other hand, a measure of  nonlinearity based on a comparison of  
energies stored in a given region is shown to be insensitive to certain types 
of  nonlinearity and thus inadequate. For a certain constitutive law the 
stored energy expression coincides with the one from the linear theory, 
hence the fact that there is significant nonlinearity in the stresses is not 
apparent in such an approach. 

To overcome such difficulties, we adopt a quantitative measure of  non- 
linearity based on the stress field, following the approach of  Knowles and 
Rosakis [6] who used a similar measure for crack problems in anti-plane 
shear. By requiring this measure to be greater than a given error tolerance, 
we identify the region where the discrepancy between the nonlinear and 
linear solutions is larger than this value. This allows one to study the effect 
of parameters of constitutive nonlinearity on the extent of  the nonlinear zone 
for the screw dislocation. In conclusion we compare the results to estimates 
of the core region obtained by semidiscrete and other numerical methods 
employing atomistic considerations. 

2. Finite anti-plane shear 

Let the cylindrical region R be occupied by a homogeneous, isotropic, elastic 
body in the unstressed state, which is chosen to be the reference configur- 
ation. A deformation 

y = y ( x )  = x + u(x), x ~ R ,  (2.1) 

maps a material point with position vector x on to a point y in R*, which 
is the region occupied by the body in the deformed configuration. Accord- 
ingly, u(x) is the displacement of  point x. Let 

F(x)  = Vy(x), x e R (2.2) 

be the deformation gradient at x, and 

J - - -  d e t F  > O, G = FF r on R (2.3) 

be the Jacobian determinant and the left Cauchy-Green tensor, respectively. 
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The Piola stress a, associated with force per unit undeformed area, and the 
Cauchy stress ~, associated with force per unit deformed area, are related by ~ 

1 
o = J ~ F  - l ,  • = ~ t r F  r (2.4) 

with the understanding that • is defined on R*, whereas a is defined on R. 
The equilibrium equations can be written in two forms, provided that body 
forces vanish: 

V - a  = 0 on R, or 

V ' x  = 0 on R* and 

,~ = ,IT on R*. 

(2.5) 

We choose a right handed, Cartesian coordinate system common to both 
deformed and undeformed configurations, such that a point x has coor- 
dinates xt, x2, x3. The x3 axis is chosen parallel to the generators of the 
cylindrical region R. 

An an t i -p lane  shear  deformation has the component form 

ya = X~, Y3 = X3 + U(Xl, x2), (2.6) 

and u is called the out of  plane displacement and can be thought of as a 
function defined on an arbitrary plane cross section H of R. From (2.2), 
(2.3), (2.6) the matrices of  components of F and G are given by 

IF/j] = [Yij] I 1 0 01  
= 0 1 0 , 

U,l u2 1 

on R (2.7) 

I 
1 0 u l ] 

[Gij] = 0 1 u,2 , IVu[ 2 = u,~u,=. 

u,i u2 1 + IVul 2 

Boldface letters indicate vectors or tensors  o f  rank two. Superscripts - 1, T, - T denote  the 
inversion, t ransposi t ion,  and  inversion o f  the t ranspose  o f  a rank- two tensor,  respectively. 
Latin subscribed indices have the range 1,2,3. Greek indices have the range 1,2. Summat ion  
convent ion  is adopted  unless otherwise specified. 



The screw dislocation problem 

It is important to note that (2.7) and the first of  (2.3) yield that 

J = d e t F  = 1 on R. (2.8) 

The above signifies that every anti-plane shear deformation is locally volume 
preserving. Incompressible materials can only sustain locally volume 
preserving deformations which satisfy condition (2.8). 

For an elastic material the mechanical response is governed by the elastic 
potential, or strain energy density function W = W(F). In case the material 
is isotropic the elastic potential depends on the deformation gradient F only 
through the three fundamental scalar invariants of  the left Cauchy-Green 
Tensor G = FF r, which are given by 

l l (G) = trG, I2(G) = ½[(trG) 2 -  tr(G2)], I3(G) = d e t G  = j 2 .  

(2.9) 

Incompressibility dictates that for every deformation 13 (G) = 1; thus for 
incompressible materials 

W(F) = W(II (FFr), I2(FFr)). (2.10) 

The component version of  the stress deformation relations for an incom- 
pressible material is 

o w ( v )  
a o - O F  ° pF,.i -1 . ( 2 . 1 1 )  

where p = p(x) on R is an arbitrary scalar pressure field which is undeter- 
mined by the constitutive law and whose presence eliminates overdetermin- 
ation arising from the incompressibility constraint (2.8). In view of (2.10), 
for an isotropic material (2.11) becomes 

[ow e 1 o = 2L011 + - ~ 2  (111 - G)F - p F  -r. (2.12) 

By (2.4) the corresponding expression for the Cauchy stress is 

ow ] z = 2 OWG + ~ ( 1 1 1  - G)G - p l ,  (2.13) 
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where 1 in (2.12), (2.13), stands for the idem tensor (with components  6ij, 
the Kronecker  delta). For  anti-plane shear (2.4) and (2.7) yield 

I,(G) = I2(G ) = 3 + lVul z. (2.14) 

Substituting (2.7) into (2.12), (2.13) we obtain the components  of  a and ~: 

l O W  O W l  &W a=a = 2 ~ + 2(2 + IVul z) -~2 - p 6,~ - 2 -~2  u,,u,, 

a~3 = - 2  ~ + p u~, a3~ = 2 + u~, 

OW OW 
¢33 = 2 ~  + 4 ~ - p ,  (2.15) 

'r~8o~ ~ To:~ = {~ ~j8 ~ g" ~3 = T" 3ct = ~ 3ct , 

&W OW 
%3 = 2(1 + [Vu[ 2)-7-;--. + 2(2 + IVu[ 2)-7-;-. - p .  

Vll o l z  

Having (2.14) in mind one observes that  with the possible exception of  p, 
all other quantities in the right-hand sides of  (2.15) depend on (x~, x2) only. 
For  convenience we state here in advance that  p can be shown to depend on 
x3 only in case of  x3-dependent tractions on OR (Knowles [7] p. 405). Thus 
for our purposes p = p(xl, x2), and the same is true for the stresses a and 
• . F rom this fact and (2.5), (2.15) it follows that  the equilibrium equations 
in terms of  displacements reduce to a system of  three quasilinear partial 
differential equations (Knowles [8]) for the two unknown functions U(Xl, x2) 
and p(x~, x2), valid on the cross section H of  the cylindrical region R for 
which x 3 = 0: 

p - 2 ~ + (2 + IVul 2) ~ + 2 ~ u , ,  u a = 0 on H, 

(2.16) 

u~ = 0 on H, (2.17) 
,P 
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where 

OW dW 
--  (3 + IVu[ 2, 3 + IVulZ). aL a/, 

An important sub-class of incompressible isotropic materials is the one 
for which the elastic potential depends only on the first invariant of  G; the 
so-called Generalized Neo-Hookean Materials: 

W = W(6).  (2.18) 

For such materials the system (2.16), (2.17) reduces to 

(2W'(3 + IVu[2)uB),p = 0 on H, (2.19) 

where a prime denotes differentiation with respect to the argument. A 
particular member of  the above subclass is the neo-Hookean solid whose 
elastic potential is given by 

,u (11 _ 3), (2.20) W(Ii) = 

where # is the shear modulus for infinitesimal deformations. Note that for 
this particular material the displacement equations of  equilibrium reduce to 

V2u = 0 on H, (2.21) 

which is precisely the form of the equation of anti-plane shear for infinitesi- 
mal deformations. Thus for anti-plane shear problems with displacement 
boundary conditions, a solution of  the linearized problem also satisfies the 
corresponding nonlinear one for the neo-Hookean material. However, a 
nonlinearity is exhibited in the Cauchy stresses for the neo-Hookean 
material, as will be shown subsequently in relation to the screw dislocation. 

In the event that u takes the form 

u(x,, x2) = k=x, (2.22) 

where k, are the components of a constant vector k, the deformation is 
termed simple shear. Letting 

r = (T3~tT3~t) I/2 = (O'3ctO'3a) I /2 ,  k = IVul = ( k ~ k ~ )  I/2 (2.23) 
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be the resultant shear stress and amount o f  shear respectively, (2.15) furnishes 
the so-called shear-response function: 

z = z(k) = 2 -~7 + k, I, = 3 + / c z , -  oo < k < ~ .  

(2.24) 

Note that the shear modulus of the material at infinitesimal deformations is 
given by 

+ (2.25) 
=3" 

We will only consider here materials for which 

dr 
/~ > 0, ~ > 0, - ~  < k < ~ ;  (2.26) 

i.e. materials having positive shear modulus at infinitesimal deformations 
and such that the slope of the shear response curve (the tangent shear 
modulus) is positive at any amount of shear. 

These restrictions assure that the displacement equations of equilibrium 
(2.16) (2.17) are elliptic for every solution u,p and at every point in H, as is 
pointed out by Knowles [7]. 

3. Formulation of the screw dislocation problem 

In this section we attempt to model an infinite, straight dislocation in a 
crystal. To that effect, consider a half plane, called the cut surface, separating 
two adjacent planes of atoms. The straight line bounding the cut surface is 
called the dislocation line. A dislocation is a deformation such that any two 
atoms whose projections onto the cut surface are separated by a fixed 
vector in the undislocated configuration become nearest neighbors in the 
dislocated configuration of the crystal. Hence their projections onto the cut 
surface coincide in the dislocated configuration. The associated vector 
difference of the projections of these atoms in the undislocated configuration 
is called the true Burger's vector, and is a constant, often chosen equal to a 
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F 

Fig. 1. Cylindrical region R, showing dislocation line F and cut surface S. 

l l  

crystal lographic lattice vector. 2 On the other  hand the jump in displacement 
of  the two atoms whose projections coincide in the undislocated configur- 
at ion is called the apparent Burger's vector and in general is a function o f  
posit ion on the cut surface. 

We consider a hyperelastic incompressible 3 body,  isotropic, homogeneous  
and occupying a cylindrical (not necessarily circular) region R in the 
reference configuration.  We let F be a straight line parallel to the generators 
of  the lateral surface and lying in the interior or R. Given a half-plane with 
F as its boundary  we let S be the intersection of  its interior and R. F and 
S are the material  dislocation line and material  dislocation surface, respect- 
ively. The region R'  consists o f  all points in R exterior to F and S. Let 
E be the plane containing S and R +, R -  be such that  R ÷ c~ R-  = ~ ,  
R ÷ w R -  = R" -- Y.. We choose h to be the unit normal  to S pointing into 
R ÷ (see Fig. 1). 

F o r  present purposes a dislocation is a deformat ion  )3 which maps R on 
to a region R .  and has the following properties: 

A. The mapping fi is one- to-one on R' and the associated displacement field 
u, given by (2.1), is twice cont inuously differentiable on R', and there is 

2 Thus the length of the Burger's vector is of the same order as one interatomic distance, 
and is thus usually assumed small compared to some characteristic length of the cross-section 
of R. 
3 The discussion in this section up to equation (3.10) also holds for compressible bodies with 
only slight modifications. 
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a pressure field p, cont inuously differentiable on R' so that u, p satisfy 
(2.1) through (2.5) and (2.8), (2.11). The deformat ion  is thus locally 
volume preserving and equilibrated. 

B. Let  b be a given constant  vector such that b • h = 0 and let 

S" = { x / x e S ,  x + b e S } .  

Then the limits 

.13+(x) = lim f i(x+ ), x E S ' ,  x + E R + 

. . . .  (3.1) 
) - ( x  + b) = l i m . ~ ( x -  + b), x ~ S ' ,  x -  e R -  

J c - ~ x  

+ - 

and the limits F,  F,  p+,  p - ,  similarly defined on S ' ,  exist for every x ~ S '  
and are cont inuous in x on S' .  

C. There is a surface S ,  associated with the deformed configuration of  the 
body as follows: 

y+(x)  = .13-(x + b) e S , ,  V x e S ' .  (3.2) 

D. Also, 

['~+(y) -- z - ( y ) ] n ( y )  = O, V y  e S , ,  (3.3) 

where 

~ + ( y )  = ~ r + ( x ) r  T(X), y = (X), 

Z - ( y )  = ~ - ( x  + b)~-T(x  + b), y = p (x + b) 
V x ~ S '  

(3.4) 

q -  _ 

and a + are related to F, F p  +- via (2.11), whereas n ( y )  is the unit normal  
to S ,  at y. 

In the above, the surface S '  c S is chosen to contain all points with 
position vector x, on the cut surface, such that  the point  with position vector 
x + b also belongs to the cut surface. This is necessary in order  to state the 
jump condit ion (3.2), which is interpreted as follows: Choose points x, 
x + b e S ' .  Then  material  points in a small ne ighborhood of  x in R + and 
in a small ne ighborhood of  x + b in R -  will have deformat ion  images both  
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lying in a small neighborhood of a point in the "deformed" surface S,. On 
the other hand (3.3) represents the requirement that the tractions be con- 
tinuous across the "deformed image" S,  of the cut surface. This is shown 
by choosing a suitably small sphere, centered at a point y ~ S, and contain- 
ing portions of the deformed images of both R + and R , and applying 
balance of Cauchy tractions on its boundary, having assumed property 
(3.1). 

One can recast requirement (D) in terms of nominal (Piola) stresses, thus 
making it appropriate for a referential formulation: Letting m~, m 2 be unit 
vectors forming an orthonormal triplet with h, having in mind that S is a 
planar surface, one deduces from (3.2) that 

q- _ _  ~ S t" [F(x) ]:(x + b)lm~, O, V x e (3.5) 

Thus by a standard formula and (3.5), it follows that 

1 + - T  1 - - r  
n(.O+(x)) = F (x)~ = n ( ~ - ( x  + b)) - F (x + b)~ 

j ( x )  j ( x )  

(3.6) 

where 

+ + 

j ( x )  = ]F(x)m, /x F(x)m2l = Ib'(x + b)m, ^ -F(x + b)m2l. 

The symbol " / x "  stands for the cross-product of two vectors. In view of 
(3.4), (3.6) and (3.3) yields 

[a+(x) - a (x + b)]fi = 0 V x ~ S ' .  (3.7) 

The vector b is the true Burger's vector of the dislocation. Note that (3.2) can 
be rewritten as follows by using (2.1): 

u+ (x) - u-  (x + b) = b on S'. (3.8) 

On the other hand the apparent Burger's vector b(x) is defined by 

/~(x) = u +(x + b) - u - (x  + b), x s S ' ,  (3.9) 

and in general is not constant on S', while it depends on the true Burger's 
vector through the deformation as shown by Teodosiu [2] who uses the 
equivalent of property (3.2) to characterize a dislocation. 
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The various types of  dislocations arise from different choices of  the 
direction of  b in relation to that of  ~, the unit vector along the dislocation 
line F. Choosing b normal to ~ corresponds to an edge dislocation, whereas 
b parallel to ¢ corresponds to a screw dislocation. For  the remainder of  the 
present work we confine at tention to the latter type. We choose a Cartesian 
Coordinate frame with base vectors e~, e2 = h, e3 = ~ and such that  F 
passes through the origin. The material cut surface S is the part of  the 
(x~, x3) half  plane interior to R with x~ positive, F being the x3 axis, and 
b = Ibl, b = be 3. 

Inspection of  (3.8) shows that  points on either side of  S undergo relative 
displacement in the x3 direction or 

/.g+ (Xl,  0,  X 3) - -  /'/3 (Xl,  0, X 3 qt- b )  = b l ,  x I > 0. 

u~ +(x 1 ,0 ,x3)  -- u~-(x 1 , 0 , x  3 + b) = 0 J 
(3.10) 

Thus there is no jump in the in-plane displacement components  in the sense 
of  (3.10). Motivated by the above, we assume at this point that the defor- 
mat ion is of  anti-plane shear type, and investigate the consequences of  (2.6) 
on (3.3), (3.8). Accordingly, we assume that there are scalar fields u(xl, x2), 
p(xl, x2) defined on the cross-section l-I' of  R'  for which x3 = 0. (Letting II  
be the cross section of  R, we delete from it the origin and positive x~ axis to 
obtain II'.) The fields u,p are to conform to the smoothness assumptions of  
property (A) and satisfy the equilibrium equations (2.16) (2.17) on I1'. In 
view of  property (B), (2.6) dictates that  

u f ( x  1,0,x3) = u f ( x l , 0 ,  x 3 + b) = u+-(xl,0), x I > 0. (3.11) 

Hence (3.8), (3.9) both reduce to a jump condition for u: 

u+(xl, O) -- u (x 1,0) = b, x I > 0, (3.12) 

whence the true and apparent Burger's vectors necessarily coincide. 4 Note 
that by virtue of  (2.15) all fields become independent of  x3. Also it is clear 
from (2.6) that an anti-plane shear deformation maps R' onto a cylindrical 
region of  the same cross-section, thus the material cut surface S and the 

4 The true and apparent  Burger's vectors necessarily coincide whenever the limiting values of 
the displacements at either side of the cut S are independent of position on the cut. Roughly 
speaking this means that  each of the "faces" of the cut suffers a rigid translation, in the fashion 
of a dislocation as described originally by Volterra. 
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corresponding spatial one S ,  have the same projection on the positive xl axis 
and their unit normals coincide with the unit vector e2. Consequently (3.3), 
(3.7) reduce to 

z ~ ( X l , 0 ) - ¢ ~ ( x ~ , 0 )  = 0 , ]  
or I , Xl > 0. (3.13) 

a,~ (x~, O) - ~i~ (Xl ,  O) = 0 

On the other hand the specialization of  the jump conditions (3.5) for 
anti-plane shear, implies 

u+ (xl O ) -  uS (x,, O ) = 0 (3.14) 

whereas u2 in general can jump. The jump conditions (3.13), (3.14) arise in 
the theory of  equilibrium shocks in anti-plane shear, discussed by Knowles 
[9]. These are weak solutions of  the equations (2.16), (2.17), such that  the 
surfaces (having the x 3-axis as generator) across which u and the tractions 
are continuous,  whereas p and Vu suffer discontinuities, leading to jump 
conditions identical in form to (3.13), (3.14). It is stated in Knowles [9] 
that  for materials obeying (2.18), and having positive infinitesimal shear 
modulus,  the discontinuity in Vu vanishes, provided the slope of  the shear 
response curve is always positive i.e., whenever (2.26) holds. One can show 
that  the same holds true in case of  a general isotropic material. In order to 
apply this result to the present situation (where the displacement itself is 
discontinuous) we need to modify the argument  presented in Knowles [9]. 
We choose a point (21, 0, 0) E YI c~ S and let D o c H be the open disc of  
radius 0 centered at it with 0 < Q < 21. Also D + = D e c~ R +. 

We define fi(Xl, x2), fi(xl, x2) on D + as follows: 

fi = u on D~+,) 

fi = u +  b on D [ , I  " 

fi = p  on D~. 

(3.15) 

We note that by (3.15) 

Vfi = Vu, ~ = v, & = a on D +,  (3.16) 

where ~, ~ are related to fi, ,6 by (2.15). Hence by (3.15) 

~ + ( x ~ , O ) -  fi-(x~,O) = O, 2~ - ~  < x~ < 2 + ~ ,  
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whereas #, ~, Vfi satisfy (3.13), (3.14) on the same interval. Hence fi qualifies 
as a weak solution of  (2.16) (2.17) on D o as defined in Section 6 of  Knowles 
[11]. Having already assumed (2.26) we conclude from (3.16) that  

+ + 

Vu + - Vu- = O ~ a  = a - T  = • on DQn S. (3.17) 

Thus Vfi can be extended by continuity to the projection of  S on H, making 
t~ continuously differentiable on D o and twice continuously differentiable of  
D~ + . On the other hand, ellipticity is precisely the requirement that the 
second partial derivatives of  fi be continuous across D o n S provided it has 
the smoothness properties just mentioned2 Similarly,/~ will be continuously 
differentiable on D 0. In a view of  (3.15), we arrive at the following con- 
clusion. If  there is an anti-plane shear deformation conforming to properties 
(A) through (D), with out-of-plane displacement satisfying (3.12), for an 
incompressible, isotropic, homogeneous body whose shear response 
function satisfies (2.26), then there are scalar, vector, tensor fields, p, g, tr, 
continuously differentiable on R - r ,  such that a, p satisfy (2.11) on R and 

g = Vu on R', (3.18) 

whereas a, p, u are related through (3.18), (2.5) on R'. 
Properties (A) through (D) seem a natural way to characterize the finite 

deformation associated with straight dislocations in elastic bodies. One 
observes, however, that  relation (3.18) differs from the corresponding one 
arising in linear&ed elastostatics. Nonetheless it is seen that if one adopts the 
assumption that the norm of  the displacement gradient be small compared 
to unity, property (A) allows one to write 

u - ( x  + b) = u - ( x )  + (Vu-)b + o(Ibl) as Ibl ~ 0. (3.19) 

Given, that IlVull ~ 1 and that Ibl is usually chosen to be much less than a 
characteristic length of  the region R one sees that the second term in the 
right-hand side of  (3.19) can be dropped, yielding for the purposes of  linear 
elasticity: 

fi-(x) - fi+(x) = b on S (3.20) 

5 For a definition of ellipticity of the displacement equations of equilibrium in elastostatics see 
Zee and Sternberg [10]. Note that z/, /~ quality as a relaxed solution of the equilibrium 
equations at the point .~ in the terminology of [10]. 
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in place of  (3.8) and (3.9). Similarly, one obtains for the linearized stress field 

(4 +(x) - 4 - (x ) )h  = 0 on S. (3.21) 

Expressions (3.20) (3.21) are the ones commonly  used as jump conditions for 
the so-called dislocation of  Somigliana type in the linear theory, as pointed 
out  by Teodosiu [2]. 

4. Screw dislocation in a circular cylinder 

We now apply the results of  the previous discussion to a particular problem, 
namely a screw dislocation in a circular cylinder, with the dislocation line at 
the axis and vanishing traction on the lateral surface. We introduce polar 
coordinates (r, 0) for the (x~, x2) plane so that  

xt = r c o s O ,  x2 = r s i n O ,  0 ~< r ~< a, 0 ~< 0 < 2zr 

and let H = {(r, 0)/0 < r ~< a, 0 ~< 0 < 2re} be the cross-section of  R 
with radius a > 0 and the origin deleted, whereas H '  = {(r, 0)/0 < r < a, 
0 < 0 < 2re} is the cross-section of  R'  with the dislocation line and cut 
deleted (Fig. 2). We assume R to be occupied by an incompressible 
homogeneous,  isotropic, elastic material in the reference configuration, 

X 2 

ri 0 

Fig. 2. Cross section H of cylinder with dislocation. 
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characterized by an elastic potential W ( I ~ , / 2 )  conforming to the ellipticity 
restriction (2.26). We seek an out-of-plane displacement field u, twice con- 
tinuously differentiable and bounded on H',  whose gradient is continuously 
differentiable on FI by extension, and a pressure field p, continuously 
differentiable on FI, such that  the equilibrium equations (2.16), (2.17) are 
satisfied on FI. Also, u is subject to the jump condit ion 

U+(Xl ,  0) - -  U--(Xl,  0) = b, 0 < x 1 < a, b = const. > 0. (4.1) 

On the other hand the circle r = a, denoted by Ca, is to be traction free: 

"Cia(Xl,X2)n~(Xl,X2) = O, r = xx/~,x  ~ = a, (4.2) 

where n~(xl, X2) = x , / a  are the components  of  the unit outward normal to 
ca. 

Note that  the following two relations are equivalent to (4.2): 

On u , n ,  = 0 on Ca, 

O W  O W  
2-x-;--, + 2(2 + IVu[ 2)-x-z-. - P  = 0 on Ca. 

(4.3) 

We begin by specializing the problem (2.16), (2.17), (4.1), (4.3) to the 
Neo-Hookean  material, obeying (2.20). Equations (2.16), (2.17) reduce to 

V2u = 0, p = const, on FI'. (4.4) 

Note that  the first of  (4.4) and (4.2) together with (4.1) constitute the 
equivalent problem for l inearized elastostatics, the solution of  which is 
s tandard (see, e.g., Hir th and Lothe [1]). In terms of  polar coordinates, 

bO 
u -  on 1-I' (4.5) 

2rr 

satisfies (4.4), (4.1) and the first of  (4.3). Also, setting p = # on FI satisfies 
the second of  (4.3), thus (4.2) holds as well. We denote by ~ the stress tensor 
field on FI for the linearized problem. For  the screw dislocation 

_ #bea ,  xa 
"c3~ = "r~3 = lau.~ 2rr ~ on H, 

{aB : {33 = 0 on I1, 

(4.6) 
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where el~ = •22 = 0 ,  el2 = --E.21 = 1 are the components of  the two- 
dimensional alternator. As was just mentioned, the displacement field for 
the Neo-Hookean material (for finite deformations) is also given by (4.5). 
However the Cauchy stress field differs from the linearized one as shown by 
(2.1 5): 

~Ti~t ~ 27cti ~ Tict  

#b 2 1 
"/733 = #IVul 2 - 4n 2 r 2 

on H. 
(4.7) 

It becomes apparent from (4.7), (2.23) that although the resultant 
shear stress depends linearly on the amount of  shear, z33 depends on its 
square, thus its effect is of  second order with respect to the displacement 
gradient. Indeed, in the linearized case (4.6), ~33 vanishes. In the Neo- 
Hookean case, z33, becomes the dominant stress component as the dis- 
location line is approached (r ~ 0), whereas for large enough distance r the 
shear stresses z3, dominate and the Cauchy stress field approaches the 
linearized one. 

We now consider the equations (2.16), (2.17) for an arbitrary choice of  the 
potential W(I  1, 12). First, observing that the pressure does not appear in 
(2.17), we let 

, M(R) = 2 ~ + 012,],,=3+R 0 ~< R < o0. (4.8) 

On letting 

R = IVul z, R# = 2u.a,u.a on H, 

(2.17) becomes 

, 2 M(lVul2)uop + 2M(IVu] )u~u~pu# = 0 on H. (4.9) 

One clearly expects different solutions u of  (4.9) for different choices of  W 
and thus M. Although this possibility is by no means ruled out, it suffices 
for the present purposes to verify by direct calculation that u given by (4.5), 
satisfies 

u## = O, u,~u~#u~ = 0 on H', (4.10) 
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thus it is a solution o f  (4.9) for  every choice o f  M cont inuously differentiable. 
In fact, Knowles [11] shows that  the only choices o f  u satisfying (4.10) - and 
thus (4.9) for every smooth  M - are the following: 

u = ClO 71-C2, C I , C2 = const.,  u = k ,x , ,  k~ = const. 

We note that  for  a suitable choice o f  the constants,  c,, c2, the first of  these 
yields (4.5), whereas the second corresponds to simple shear. 

As is shown in Knowles [1 1], if u satisfies (4.10) then one can choose p so 
that (2.16) is also satisfied. Fo r  the remainder  o f  this section u will be given 
by (4.5) which is known to satisfy (2.17) for  every choice of  W (twice 
cont inuously  differentiable with respect to I~,I~ >1 3), and also (4.1) and the 
first of  (4.3). It remains to find p such that  (2.1 6) and the second of  (4.3) hold 
in order  to arrive at the solution. To  that  effect let 

, o , 0 ( )  - o w  , 

I~=3+R 0 ~< R < ~ ,  

6 2 
R = IVu[2 = 4~2r 2 on rI. 

Then,  by (4.10), (2.16) becomes 

{p - 2[o91(R ) + (2 + R)o92(R)l}, , + 2~o2(R)R., = 0 on I-l. 

(4.11) 

Lett ing 

f~(R) = fo R co2(0) dQ, 

one sees that  this reduces to 

{p - 2[o91(R) + (2 + R)m2(R ) - f~(R)]}., = 0 on H. 

We thus let 

P (R )  = 2[ml(R) + (2 + R)m2(R) - f~(R)], 0 ~< R < oo, 

p(xl, x2) = P(lVu(xl, Xz)[ 2) + d on H,  d = const. (4.12) 
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The constant  d is determined by invoking the second of  (4.3), which together 
with (4.12) reduce to 

d = fl 

and the pressure is determined: 

P 
OW 

= 2 ~ 1  
63W I(b2/4n2a 2) 63W 

+ 2(2 + [Vul2) --~- 2 --]- 2 J(b2/4n2r2) 6312 - - ( 3  + Q, 3 + 0) dQ, 

(4.13) 

where u = -bO/(2rc), IVul2 = b2/(4x2rZ), on IlL The fields u,p given 
by (4.5), (4.13) provide the solution of  (2.16), (2.17), (4.1), (4.2). The 
corresponding Cauchy stress field components  arise from (2.15), (4.5), 
(4.13): 

"GI~ 63W{6 x, xp) b 2 [2 f,~/2.r~ L_w(3 + ~, 3 + o) dQ 6.~ - 2 
L J(~/2.o)2 a/2 63/2 \ ~ ? 4xZr: 

r,3 = z3, = 2 ( 0 - ~  + 63-~--i-2) b~'x~2xrz , (4.14) 

63W b 2 
T33 ~ 2 - - - -  6311 4nZr 2 

f(b/2xr) 2 6 3 W 
+ 2 :(b/2..)~ ~ (3 + O, 3 + O) do, 

where 

63W 63W( b 2 b 2 ) 
63I, - 63I~ 3 + 4n2-----~,3 + ~ , 0 < r ~< a. 

An example is furnished by the Mooney-Rivl in  material, characterized 
by 

( p ) -  B 
W - B _ _ _ _ .  (I1 - -  3) + (/2 - 3), I= >t 3, (4.15) 
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#, B const.,  kt >/ B > 0. The restrictions imposed on/~, B ensure ellipticity 
(2.26). (4.14) becomes 

$',, = B 4/ t2  \ r 4 

#bea, xp 0 < r <~ a. (4.16) 
$',3 = $'3, - 27rr 2 , 

$'33 - -  47t2 

On the other  hand,  setting B = 0, p > 0 in (4.16) one recovers the Neo-  
H o o k e a n  case (4.7) as expected f rom (4.15). In (4.16) a strong nonlineari ty 
is exhibited near the dislocation line in $',~, and 1733 since 

"t',fl = 0 ( / ' - 2 ) ,  $'33 = O(r-2) ,  $',3 = O(r  -1)  as r ~ 0 ,  (4.17) 

whereas in the N e o - H o o k e a n  case $',~ vanishes. 
F o r  a generalized N e o - H o o k e a n  material  characterized by W = W(I~) ,  

(4.14) specializes to 

z,~ = z& = 0, 

$',3 = $'3, ~" W "  3 + 

z33 = 2 W "  3 + ~ 4rc2 F 

~ x ~ ,  
0 < r ~< a. (4.18) 

Note  that  the stress field in this case does not  depend on the radius o f  the 
cylinder. This is clear f rom the fact that  the constant  d in (4.12) vanishes for  
generalized N e o - H o o k e a n  materials. 

In order  to make a quanti ta t ive statement regarding the effect o f  the 
nonlineari ty  in the stress field it is instructive to consider the following 
impor tan t  subclass o f  the General ized N e o - H o o k e a n  materials. These are 
characterized by an elastic potential  function o f  the form 

c in } 
W(I1)  = ~cc 1 + -n (11 -- 3) -- 1 , 11 >/ 3, (4.19) 
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T~ 

n>J/ 
n=l 

< n < l  

/./. 

[ ~ton-'p. 
o k 

Fig. 3. Shear response curves for generalized neo-Hookean power law materials. 

where #, n, c are material  constants.  These materials are known as Power 
Law materials. The  infinitesimal shear modulus  # and the constant  c are 
restricted here to be positive. The parameter  n plays the role o f  a "hardening 
exponent" .  F r o m  (4.18), (2.24) the shear response function becomes 

I In-- 1 r(k) = # 1 +-Ck2 k, - o o  < k < oo. (4.20) 
n 

In view of  the restrictions on #, c, the ellipticity condi t ion (2.26) becomes 
equivalent to n /> 1/2. As is noted in Knowles [7], the case n = 1/2 gives rise 
to a bounded  shear stress; z ~ # / x / ~  as k ~ oo, whereas for  n > 1/2, 
z ~ ~ as k ~ ~ .  Characterist ic shapes o f  shear response curves for  va- 
rious values o f  n are shown in Fig. 3. In view of  (4.19) the Cauchy stress 
components  are obtained f rom (4.14): 

• ~ = ~ = O, 
[ cb2 T- '  b ~xP 

t z3~ = z~3 = # 1 + 4n2n------ ~ 2z~ - - 7 - '  

[ cb2 ] "-! b2 
~33 = /t 1 + 4~2n-------- ~ 4/.c2r 2 

O < r < ~ a .  

(4.21) 

Apar t  f rom the problem for the cylinder o f  bounded  cross section, it is 
interesting to consider the following alternative. Let  the region R be the 
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whole space, so that  H '  consists of  all points in the (Xl, X2) plane exterior 
to the positive x~-axis and the origin. Instead of  (4.3) we require that 

= o(1) as r ~ ~ .  (4.22) 

We also require the elastic potential to be such that  in the absence of  
pressure the stresses vanish at the undeformed state (11, 12) = (3, 3). It is 
easy to verify that  the stress field for this situation and for a general material 
W(II,  12) is obtained by taking the limit as a ~ ~ in the expressions (4.14). 
It suffices to note that  I~ ~ 3 as r ~ oo and thus the condition on the 
stresses, (4.22), is indeed satisfied. 

The specialization (4.18) of  (4.14) appropriate to Generalized Neo- 
Hookean  materials is, as mentioned, independent o f  the radius a. Further- 
more the stress field automatically satisfies the condit ion (4.22) at infinity. 
Moreover,  all circular cylinders centered at the dislocation line (x3-axis) are 
traction free. For  these materials, letting (4.18) be valid for a ~< r < 
(a > 0) provides the stress field for the exterior problem where R is the 
region exterior to the cylinder of  radius a with vanishing fractions and the 
stress is subject to (4.22). Similarly if R is the region between the cylindrical 
traction free surfaces r = al and r = a 2 (a 2 > al > 0), (4.18) is again 
appropriate for al <~ r ~< a2. 

5. Scale of the nonlinear effect (estimates of the dislocation core region) 

The use of  nonlinear elasticity theory in the analysis of  the screw dislocation 
problem considered here shows that  considerable nonlinear effects will 
predominate in the vicinity of  the dislocation line. The large displacement 
gradients predicted as the dislocation line is approached clearly demonstrate 
the inadequacy of  the linearized elasticity theory, as well as of  any "small 
strain," "physically nonl inear"  theory, in describing the deformation field 
accurately. In addit ion and as is evident by equations (4.14), (4.17) and 
(4.18), a strong nonlinearity in the resulting stress field is demonstrated by 
the existence of  the highly singular stress components  z~a and z33 , an effect 
which is entirely absent when the linear theory or the "physically nonlinear"  
theories [4] are used. 

Insofar as we know, there are no rigorous analytical estimates available 
of  the extent of  the nonlinearities in a dislocation problem. Moreover,  even 
a precise version of  the question seems to be lacking. In this section, we 
formulate and answer such a question for two particular screw dislocation 
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problems. The first problem corresponds to a screw dislocation in an 
unbounded domain occupied by a generalized Neo-Hookean solid 
(W = W(I1)) with the stress components required to approach zero away 
from the dislocation line. The second problem corresponds to a screw 
dislocation in an unbounded domain occupied by a Neo-Hookean solid 
( W  = p/2(I~ - 3)) with the deformation approaching a prescribed simple 
shear away from the dislocation line. For the above problems two measures 
of nonlinearity of the solution are discussed. The first is based on the 
calculation of energy stored in the region between two circular cylindrical 
surfaces centered at the dislocation line. The second is based on an appro- 
priate generalization of the stress nonlinearity measure introduced by 
Knowles and Rosakis [6] for the description of nonlinear effects in a mode 
III crack problem. Finally the sensitivity of the two nonlinear measures 
is discussed and their results are compared to the estimates of dislo- 
cation "core"-size predictions based on numerical semi-discrete atomistic 
calculations. 

5.1. Energy calculations. The screw dislocation in a generalized 
Neo-Hookean solid with stresses vanishing at infinity 

We now apply the results of Section 4 to the particular problem of a screw 
dislocation in an unbounded domain occupied by a solid belonging to an 
important subclass of generalized Neo-Hookean solids, namely the power 
law material. For this problem the stress field tends to vanish away from the 
dislocation line. Our goal is the calculation of the strain energy per unit 
dislocation line length stored in the material occupying a region P bounded 
by two cylindrical surfaces of radii Q and R, respectively, where 
0 < 0 < R < ~ .  The energy per unit length E(R,  O; n) is obtained by 
integration of the strain energy density W(I~) for a power law material 
(4.19) over the cross-section of the cylindrical region P, for different values 
of the hardening exponent n: 

E(R,  O; n) = ~c 1 + - I V u l  2 - 1 rd rdO, (5.1.1) 
n 

where according to the second of (4.13), [Vul 2 = b2/(a~c2r2), r > O. 
Closed-form expressions for E(R,  Q; n) can be obtained for particular 

representative values of n. Characteristic shapes of shear response curves for 
power hardening solids corresponding to different values of n are shown in 
Fig. 2. 
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For  n integer, n > 1, equation (5.1.1) gives 

8zcn k=l n -----~-~ 1 + 4n2nR---------- ~ 

-- 1 + 4--~-no 2 + ~ ln-ff 0 < 0 < R < ~ .  

(5.1.2) 

For  n = 2 the above expression becomes 

E(R ,o ;2 )  - #b4c I ~  1 1  pb2 R 128n3 2 R2 + ~ l n - - ,  0 < O < R < oo. 
0 

(5.1.3) 

As is evident from equations (5.1.2) and (5.1.3), the energy per unit length 
ofr n > 1 differs from the one predicted by the linearized elasticity theory 
through terms of  order b2(b/Q) 2("-~) as the dislocation line is approached 
(Q ~ 0). On the other hand for n = 1 (Neo-Hookean solid) (5.1) gives: 

p.b 2 R 
E(R,o;  1) - I n - - ,  0 < 0 < R < ~ .  (5.1.4) 

4n O 

For  this case the expression for the energy per unit dislocation line length, 
is identical to the analogous expression predicted by the linearized elasticity 
theory. As already discussed in Section 4, the stress field due to the screw 
dislocation in a Neo-Hookean solid, is the same as the one predicted by 
linear elasticity with the exception of  the axial normal stress 2733 = (#b  2)/ 
(2nr z), which provides the only manifestation of  substantial nonlinear effect 
at the vicinity of  the dislocation line (core-region). The existence of  a strong 
nonlinear effect in this case is not  reflected in the calculation of  the energy 
per unit length. This clearly demonstrates that the energy is not a very 
sensitive measure of  nonlinearities. As a result, at tempts to calculate the 
extent of  the dislocation core region by comparison of  energies evaluated by 
means of  linear and nonlinear theories are expected to underestimate the 
region of  dominance of  core nonlinearities. For  example, if such a com- 
parison is carried out  for the Neo-Hookean solid; the predicted nonlinear 
region would be of  zero radius, a result which is clearly incorrect in view of  
the large displacement gradients and the non-linearities present through the 
axial normal stress z33. The above observations are also related to the use of  



The screw dislocation problem 27 

numerical, discrete or semi-discrete atomistic models for the calculation of  
dislocation core regions. In such calculations the numerical estimates of  
energy based on atomistic models are compared to the energy predicted by 
linear elasticity theory. The extent of  the region of  nonlinearity is then 
defined as the distance from the dislocation line for which the two energy 
predictions differ by a fixed percentage. Such techniques have been exten- 
sively reviewed by Hirth and Lothe [1] and by Teodosiu [2]. As pointed out  
by Teodosiu, atomistic calculations give core regions of  radius of  the order 
of  one Burger's vector, with displacement gradients as high as 30% there. 
On the other hand the linear elastic solution matches the atomic displace- 
ments only at larger distances of  the order of  10-15 b (Teodosiu [2]). 

For  n = 1/2, the strain energy per unit dislocation length becomes 

71~].~ [ ( cb 2 x~l/2 __ Q2 ( cb 2 ~1/2~ 
E(R, Q; 1/2) = ~c  R2 1 + 27z2R2 j 1 + 2zd02,, I .j 

rc~ [R 2 _ 02 ] 
2c 

cb 2 cb 2 ~1/27- ] 

+ #b2 In , [ cb2 ( cb2 ~1/2~ / 
Q2 + 1+2 2¢/ _13 

0 < Q < R < o v .  

For  n = 1/2, the stress field (4.21) becomes 

(5.1.5) 

17~/~ = 17/~ = O, 

#b 1 + 
z~3 173~ 2x L 2r? r 2 _] 

-- F cb 2 ~-1/2 1 #b2 1 + 
1733 4/1:2 [_ 2/1:2 r 2 J r 2 

U2 8/~ x/~ 
? ' (0 < r < oo); (5.1.6) 

expressing (5.1.6) in terms of  polar coordinates one sees that the assymptotic 
behavior of  the shear stress components  17,3 as r --* 0 is given by 

1713 ~ -- (#/x/~) sin 0, } as r ~ 0 .  
1723 ( ~ / x / ~ )  co s  0 

(5.1.7) 
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(5.1.7) shows that  for n = 1/2 the shear stress components  z~3 are bounded 
as r ~ 0 with the maximum amplitude of  /~/x/~, which, as expected, 
corresponds to the assymptotic value of  the stress in the shear response 
curve as k ~ ~ .  

In addition (5.1.5) shows that  the limit of  the energy as Q ---, 0 exists and 
is given by 

Q~0 ~C R2 1 q- 27c2R2 / -- R 2 

1+4  ,R-  1 
cb = "~'/=]'121 

+ _1 J '  

R > 0. (5.1.8) 

It is crucial to note that  for n > 1/2, the integral (5.1.1) does not exist for 
Q = 0. The case n = 1/2 is exceptional in the sense that it is the only one, 
among those admitted by the ellipticity restriction (2.26), which gives rise to 
finite strain energy stored in a region containing the dislocation line. 

For  R >> x/(e/2) b/rt equation (5.1.8) can be expressed as 

47t (½ + ln2) + ~-n In 

+ O - -  as  - - b - ~ O o .  (5.1.9) 

Expression (5.1.9) bears an interesting similarity to the analogous expression 
for the energy per unit dislocation line length calculated on the basis of  the 
approximate simple model suggested by Peierls (Hirth and Lothe [1], p. 218). 
The Peierls model attempts to take into account the lattice periodicity at the 
vicinity of  a dislocation in a crystalline solid. 

As the dislocation line is approached, the stress according to Peierls 
remains bounded with a maximum amplitude of  i~bj2ztd at r = 0 (d is the 
interatomic spacing of  the crystal). The energy per unit dislocation line also 
remains bounded as 0 ~ 0 and is given by Hirth and Lothe [1]: 

EpEIERLS = ~b24---~- + -4-~r-n In d ' # b  2 R (5.1.10) 
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In the absence of  rigorous nonlinear treatments of the dislocation prob- 
lem, the Peierls model has been very successful in providing some early 
answers to a number of  important materials science questions that could not 
be addressed by means of  the classical linear elasticity theory. Although no 
direct analogy can be drawn between our treatment and this model, we feel 
that it is instructive to demonstrate the similarity in the resulting energy 
expressions. If, for the sake of  comparison only, the amplitude of  the stresses 
predicted by Peierls, pb/2z~d, is set equal to the amplitude of the stresses, 
p / x / ~ ,  predicted in (5.1.7), for n -- 1/2, then c = 2~2d/b and expression 
(5.1.9) for the energy per unit dislocation line can be written as 

E = (1.2) pb2 Pb2 R (5.1.11) 
+ -4-~- In -~ • 

Given the differences between the two treatments, expressions (5.1.10) and 
(5.1.11) are in excellent agreement. This is largely due to the fact that both 
approaches adopt constitutive models with bounded shear stresses. 

Following the approach outlined by Hirth and Lothe [1] (page 232) an 
estimate of  the size of the core region Q, can be obtained if either of (5.1.10) 
or (5.1.11) is equated to 

#b2 In R .  
4n Q, 

The estimate of 0c thus obtained is given by 

d 
0 , . -  2nel.2 - el.2 (5.1.12) 

The above estimate is in very good agreement with the one presented by 
Peierls as well as with the results of  atomistic calculations described in 
Teodosiu [2]. Thus for 0,. < 0 < R the energy calculated in terms of the non- 
linear and linear models are in good agreement. On the other hand, as will be 
demonstrated in the next section, this estimate gravely underestimates the 
region of dominance of  nonlinear effects at the vicinity of the dislocation line. 

5.2. Dislocation in a Neo-Hookean solid subjected to simple shear at 
infinity 

Here the problem of a screw dislocation in an unbounded domain, occupied 
by a Neo-Hookean solid, with the deformation approaching simple shear at 
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infinity will be addressed. Although this problem was not considered earlier 
its solution can easily be constructed by making use of  results presented in 
Section 2. For  the neo-Hookean case, the dislocation problem stated above 
specializes exactly (and not  merely by linearization) in view of  (2.21) to 

u , ,  = 0 o n  R,  

U + (Xl ,  O) - -  I./--(Xl, O) = b, 0 < x, < ~ ,  

u ( x l , x 2 )  ~ k ' x  as ~ + ~ ~ ~ ,  

(5.2.1) 

T33 ~--- plVul 2. 

The solution of  (5.2.1) is the same as the one of  the linearized case and is 
given by 

bO bO 
u - 2rt + r(k~ cos 0 + k 2 sin O) - 2re + k , x , ,  

Vr  > 0 , 0  < 0 < 2ft. (5.2.2) 

The corresponding stress field is given by 

# b  8e~x # 
T~3 = ~3~ = ~3~ 2n r 2 + #ks, 

r33 = I~ k~k~ + ~ e~k~x~ + 4 - ~  

Vr  > 0 , 0  < 0 < 2n, 

(5.2.3) 

where r 2 = x~ + ~ and ~ii are the stress components  for the solution of  
the linearized problem. The strain energy per unit dislocation line length 
stored by the material bounded by two cylindrical surfaces of  radii 0 and R, 
respectively, where 0 < Q < R < ~ is given by means of  (5.1.1), (5.2.2) 

where k = k~e t + k2e2, is the amount  of  shear at infinity. 
It should be noted here that  al though the boundary  value problem (5.2.1) 

is a linear one, the nonlinear effect is demonstrated through the existence of  
the axial stress 2733 given by 
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for n = 1 as 

/~J'~"j'o RIVul 2rdrdO, 0 < 0 < R < ~ ,  E'(R,  O; 1) = ~- (5.2.4) 

where 

b b 2 
IVul z = k , k ,  + ~ e,pk, xa + 4rcz----- ~ . 

Thus (5.2.4) becomes 

E'(R,  Q; 1) /tb2 In R = /altk, k~(R 2 - r z) + ~ -  r '  0 < Q < R < o o .  

(5.2.5) 

E'(R,  Q; 1) is the same as in the linearized case and does not  reflect the 
strong nonlinear effect clearly exhibited by the existence of  a non-zero axial 
tension T33. As a matter  of  fact, the dependence of  z33 on k~ indicates that, 
in addit ion to the region near the dislocation line, nonlinear effects may 
dominate through the entire domain for certain values of  the amount  of  
shear k~ prescribed at infinity. This behavior will be discussed in detail in the 
following section. 

5.3. A stress nonlinearity measure 

As demonstrated in Section 5.1, the strain energy per unit length calculated 
by means of  fully nonlinear cont inuum models, or computed on the basis of  
the discrete atomistic models of  dislocations in crystals, may be insensitive 
to certain strong nonlinear effects present at the vicinity of  the dislocation 
line. A more appropriate estimate of  the extent of  nonlinearities should be 
based on some measure of  the difference of  the stress field predicted by the 
fully nonlinear theory presented above and the corresponding linearized 
stress field. Indeed the ratio fl~ - ~ II/11~ II seems to provide a natural measure 
of  the size of  the local nonlinear effect. The reason for this choice is the 
following: For  all problems considered in the present work the displacement 
fields happen to coincide for both the nonlinear and linearized problems. As 
a result, nonlinear effects assert themselves only through the stress fields. In 
the above ratio ~ is the Cauchy stress tensor obtained by means of  the 
nonlinear analysis while ~ is the equivalent quanti ty obtained for the same 
problem by means of  the linearized theory. The proposed measure is a 
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generalization of  the ratio used by Knowles and Rosakis [6], for the study 
of  nonlinear effects in the case of  a mode-I l l  crack in a neo-Hookean solid. 
Indeed for a neo-Hookean solid undergoing an antiplane shear deformation 
the above ratio reduces to T33/1['~ ][ which is proport ional  to the ratio used in 
Knowles and Rosakis [6]. 

I f  ~ is a given constant  representing a specific error tolerance, 0 < ¢ < 1, 
the elastic field at a given point will be said to be approx imate ly  linear at level 

if Itz - ~11/11~11 < ~ at that  point. Accordingly, we define the l - level  
nonlinear zone N¢ as the set of  all points (xt, x2) such that, 

II~(x,, x~) - ~ (x , ,  xz)lL 

II~(xl, x2)ll 
>/~ ,  (5.3.1) 

where  I1~11 = ~zij~0. 
For  a generalized neo-Hookean solid undergoing an antiplane shear 

deformation the components  of  the stress field are given by 

• ~ = ~ = O, 

z3, = z,3 = 2 W ' ( I i ) u , ,  (5.3.2) 

"t'33 = 2W'(II)IVu[ 2, 

while the corresponding components  computed on the basis of  the linear 
theory are 

"c~ = "~t~ = O, 

~3, = z~3 = ktu,, (5.3.3) 

{33 = 0 .  

Thus from (5.3.1), (5.3.2), and (5.3.3) we conclude that  the ~-level nonlinear 
zone is the set of  points for which 

[(W'(I,))21Vul 2 + 2(2W'(I~) - #)2],/2 
>~ (. (5.3.4) 

For  the particular case of  a screw dislocation in an infinite domain occupied 
by a power law material, with the stresses vanishing at infinity, 

I e ] . -  1 b 2 
2W'(I t )  = # 1 + - [ V u l  2 , IVu[ 2 = 

n 4n27  ' 
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and the above becomes 

b ' n ' c  = 1 + 41t2n~ ~ + 1 

(+2)  1+ - 2 1 + 4n2nr2 + 1 f> 4. (5.3.5) 

Note that  the boundary  of  N+ is a circle centered at the origin whose radius 
will, in general, depend on 4, b, n, and c. For  the case of  a neo-Hookean 
solid, (n = 1), (5.3.5) becomes independent of  c and is given by 

( r  ) ( b2 "~ '/2 
c = > 1 4  

The above shows that  the radius r+ of  the 4-level nonlinear zone is equal to 

b 
r e - zx/z ~ ,, ~-lr . .  (5.3.6) 

For  4 = 1%, (5.3.6) gives r+ = l l .5b.  This value is consistent with the 
distance from the dislocation line for which atomistic calculations are in 
good agreement with the linearized elasticity solution (Teodosiu [2]). 
For  n g: 1, re depends on the choice of  c and n. Fig. 4 and Fig. 5 show 
~(r/b, n, c), the left hand side of  (5.25), plotted versus rib for various values 
o fn .  In Fig. 4, c is taken to be 20 whereas in fig. 5, c is 100. Given a value 

0 . 0 2 3 ,  , 

& °°i I -  .oo9,1.o ~ ~  

<~.D 0.0061 

6 

r ib  

Fig. 4(a). Nonl inea r  stress measure  ~(r/b, n, 20) versus normal ized  radius  r/b for var ious  
values of  ha rden ing  exponent  n (n = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). 
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Fig. 4(b). Nonlinear stress measure ~(r/b, n, 20) versus normalized radius r/b for various 
values of hardening exponent n (n = 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 10.0, 15.0). 
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r / b  

Fig. 5(a). Nonlinear stress measure ~(r/b, n, 100) versus normalized radius rib for various 
values of hardening exponent n (n = 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). 

of  ~ (say ¢ = 1%, as indicated by the horizontal  dotted line) the radius r¢ 
of  the nonlinear zone can easily be calculated from these figures. The 
sensitivity o f  the radius o f  the nonlinear zone to c is shown in Figs. 6(a, b) 
where r e, (3 = 1%) is plotted versus c for a variety of  values o f  n. In Fig. 
6(a), n was taken to be 0.5, 0.6, 0.7, 0.8, 0.9, and 1, whereas in Fig. 6(b), n 
was 1, 1.5, 2, 3, 4, 5, 10, 15. The results indicate that for c < 10 the radius 
of  the nonlinear zone is insensitive to the choice of  n. It is also evident from 
Fig. 6(a, b) that n = 1/2 always results in the largest predictions of  r e for 
given c. 
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Fig. 5(b). Nonl inear  stress measure ~(r/b, n, 100) versus normalized radius r/b for various 
values o f  hardening exponent  n (n = 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 10.0, 15.0). 
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Fig. 6(a). Effect o f  consti tutive parameter  c on the normal ized radius of  the nonl inear  zone 
(~ = 0.01). The hardening exponent  n takes the values: 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. 

In Section 5.1, the case n = 1/2 was compared to the results of  Peierls' 
model. This comparison was carried out by equating the amplitude #b/2~zd 
of the bounded stresses z~3 given by Peierls, to the amplitude # / x / ~  of  the 
corresponding bounded stress predicted by (5.1.7). This was equivalent to 
setting c = 2x2d/b ~- 20. 

It is interesting to note here that for n -- 1/2 and c = 20 as above, 
Fig. 4(a) predicts a value ofr~ -~ 12.4b. This value, is an order of magnitude 
larger than the estimate of non-linear zone side predicted in (5.1.12) by 
means of an energy argument for the same problem. This disagreement is by 
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Fig. 6(b). Effect of constitutive parameter e on the normalized radius of the nonlinear zone 
(4 = 0.0]). The hardening exponent n takes the values: 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 10.0, 15.0. 

no means unexpected since, as discussed in Section 5. l ,  energy is not a very 

sensit ive measure of  nonlinearit ies. Indeed the estimate r e -~ ]2.4b is in good 
agreement wi th  the atornistic calculations referred above (Teodosiu [2]). 

The nonl inear stress measure (5.3.4) can also be applied to the study of  
the more complex problem of a dislocation in an unbounded domain 
occupied by a neo-Hookean solid wi th the deformation approaching simple 
shear at inf ini ty.  In  this case, and as demonstrated by equation (5.2.3) the 
result ing nonl inear i ty  wi l l  also depend on the amount o f  shear k~ and wi l l  
not necessarily be confined to the region surrounding the dislocation line. 

For  a neo-Hookean so]id W' ( I I )  = # and (5.3.4) reduces to 

1 
IVul ~> 4. 

Use of  (5.2.2) reduces the above to 

k=k= + ~ e~ak=xp + 4r?r2j >1 4. 

Equat ion  (5.3.7) can also be expressed as 

x l - 2 ~ ( k  2_2~2) + x2+2~2(kY-2~2) /> 

(5.3.7) 

~2b2 

2rEz(k a -- 2{~)2' 

(5.3.8) 

where k 2 = k~k~, ~ > O, k~ > 0. 
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We call the nonlinear effect contained at level ~ if N~ is bounded and 
contains the dislocation line. Otherwise we say that N~ is uncontained. In par- 
ticular if the complement  of  N~ is bounded, then N~ will be called enveloping. 

For k= = 0, (5.3.8) reduces to (5.3.6) and the nonlinear effect is contained 
for every ~ level: The boundary of  the nonlinear zone is a circle centered at 
the origin of  radius r e = b/2v/27r~. A schematic of  the nonlinear zone for 
k= = 0 is shown in Fig. 7a. 

For 0 < k < ~/2~, the nonlinear zone is contained and is composed  o f  the 

boundary and  the interior o f  a circle of  radius b ~ / x / ~ ( 2 ~  2 - Ic E) centered at 
x¿ = bk2/27r(k 2 - 2~2), x2 = - b k l / 2 7 r ( k  2 - 2~2). This circle contains the 
origin for every k < v/2~ (see Fig. 7(b)). As k ~ x / ~  the radius of  the circle 
increases and its center recedes to infinity. 

For k = x / ~  the circle degenerates to a straight line with intercepts 
x~ = b/4~rk 2 and x2 = -b/4rckl (see Fig. 7(c)), and the nonlinear zone, 
which is uncontained, occupies the half plane defined by 

b 2 b 

4 / r  2 ~Z ( k 2 x  I - -  k l x 2 )  ~> O. 

For k > x / ~  the nonlinear zone N~ becomes enveloping. It then occupies 
the exter ior  and  boundary  of a circle of  radius b~/x/~lr(k 2 - -  2 ~  2) centered at 
xl = bk2/27r(k 2 - 2~2), x2 = -bkl/27r(k 2 - 2~ 2) which does not contain 
the origin for every k > x / ~  (see Fig. 7(d)). 

i :2 kl= k 2 =0  

• ~.. :..."~.'" .r..:..'~....,~. 
.~iiiii-iiiii" iii-~i'i..':~ 

 .i-ii-i !iiiiiiiiiiiiif..."i iii  

ii iiii! 
 iiiiiiii . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x, 

F i g .  7 ( a ) .  ~-level non l inear  zone N¢ (shaded),  k= = O. 
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Fig.  7(b) .  l - l eve l  n o n l i n e a r  zone  N¢ ( shaded) ,  0 < k < ,V/2~. 
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Fig. 7(c). l - leve l  n o n l i n e a r  zone  N~ (shaded), k = ~/2¢ .  



The screw dislocation problem 

i! iiii!i!iiiii iiii iiiiiiiiiiii ilii iiiiiiiiiiiii 
i:i:i:i:i:i:i:i:i:i:i:i:~:i:~iii~i~i~i:i:i:i:i:i:i~i: 

:x~ ........... .......... ~ 2 , ~ 2  ................................................ ........ 

ii iiiiiiiiiiii iiii iiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiii 
iii!::::iii::;~::ui::ii::::iiiii::i::iii::]::i::i::i~ii~ ~ ( ~  - 2 e ~) i::ili::i 

iiiiiii:i:ii!:i:i:i:i:i:i:i:i}i!ili!iiiii:!:!:}: 0 | :i:i:iiiiiiiiii~ii:i:i:i:i:i:i:!:!:!~!il.!:!:i:!:!:!:!:!:i:!: :!: :i:i:i~i~:r~:~!i!i!i:!: :~'X" !~!}i 
i;i~i~ i::ii;iiii iii:: i i i ~i~i~i~ ~i~ i i :: i :~: ]iil i ;i~::iiiii!~ i i i i :: iiili :: ~i~ i iii iii:: fill:: i iii iii :: ~ ::ii i iii ~i~ ~ i i if:: ;:;::~i~i 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ~::~::~i~::~::~i~ i i ~ : "  " ~ : ~  ~ ~ ~ i i i i i iii ~ i i i ~ i i i i i ! i i::i iiil 
::i~i~i::i~!::!::i.i::iiiiiiiiiiiiiii::;.~::i~iiiii:.iiiii:.iil i:.iiiii::iii~i~' ~ "~iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiil 

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: . . . .  iiiiiiiiiiiiiiiii! 
i iiiiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiilil iiiii!~ tliiiiiiiiiiiiiil i i i iiiiiiiiii 

'~i~,i i',i'~i'~i'~ilili',!',!',i',iii i i i',i',!; !iiii iiiii!iiiiiii i',i !i; i i i i i i i ! i i l ; , - . , ~ , : : ~ - ~  ::i:.i~i~i 
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ~ "rr ( k - :~ ~' )i::i::i::i:: 

Fig. 7(d). ~-level nonlinear zone N~ (shaded), k > V/2~. 
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