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ABSTRACT

A DETAILED finite element analysis of the monotonic loading of a stationary crack is performed under
Mode 1 plane stress, small-scale yielding conditions. A small strain, J, incremental plasticity theory is
employed and both elastic-perfectly plastic and power law hardening materials are considered. Some issues
such as the range of dominance of the asymptotic stress and deformation fields and the amount of non-
proportional loading near the crack tip, which have received wide attention in the analogous plane strain
problem, are examined. Special attention is devoted to the perfectly plastic idealization by performing a
separate singular finite element analysis to clarify some details about the asymptotic stress and deformation
fields. The full-field numerical solution is used to simulate synthetic (optical) caustic patterns at different
distances from the tip, which are compared with experimental observations and with asymptotic analytical
results.

1. INTRODUCTION

THE STRESS INTENSITY factor is a measure of the intensity of the stress and strain fields
near a crack tip in linear elastic fracture mechanics. However, fracture in most
structural materials, particularly low and intermediate strength metals, is often
accompanied by plastic flow near the crack tip, invalidating the assumptions of linear
elasticity theory. Under certain circumstances, the stress intensity factor can still be
used to characterize the onset of crack growth, provided that the plastic zone is
contained well within the region of dominance of the singular elastic field. This
situation is often referred to as “‘small-scale yielding.”” But when plastic flow takes
place over large size scales, one is compelled to seek continuum solutions for crack
problems within the context of an elastic—plastic theory.

HuTcHINSON (1968a, b) and RICE and ROSENGREN (1968) performed the asymptotic
analysis for stress and deformation fields near a monotonically loaded stationary
crack tip in a power law hardening material obeying a deformation plasticity theory.
The fact that the value of the J integral (RICE, 1968a) provides a measure of the
intensity of the near-tip field in this asymptotic solution has prompted some inves-
tigators (e.g., BEGLEY and LANDES, 1972) to propose a criterion for the onset of crack
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growth based on the attainment of a critical value for J. This proposal has been
complemented by a wide range of experimental data (e.g., LANDES and BEGLEY, 1972).

In order to characterize fracture initiation based on this single macroscopic par-
ameter, it is imperative that the plastic singular fields of HutrcHINSON (1968a, b) and
Rice and ROSENGREN (1968) should dominate over a length scale that is large as
compared to the fracture process zone. In this region, microstructural processes such
as void nucleation and growth, microcracking, etc. take place. The fracture process
zone 1s often believed to coincide with the region near the tip, wherein finite strain
effects are significant. In addition to the above issues, another important factor that
has to be considered is the possibility of non-proportional loading near the tip, which
would render the deformation plasticity theory (on which the analysis of HUTCHINSON
(19684, b) and RicE and ROSENGREN (1968) is based) to be physically inappropriate.

The above issues have been examined by several investigators through numerical
methods predominantly under the tensile plane strain mode of fracture. Accurate
finite element studies with crack tip elements making use of special interpolation
functions to account for the plastic strain singularity were conducted by LEvy,
MARCAL, OSTERGREN and RICE (1971) and RICE and TRACEY (1973) for the perfectly
plastic case and by TrRacEy (1976) for hardening materials. These studies modelled
Mode I plane strain, small-scale yielding conditions and employed an incremental
plasticity theory. They confirmed the validity of the dominant fields of HUTCHINSON
(1968a, b) and Rice and ROSENGREN (1968) in a region quite close to the crack tip.
MCMEEKING (1977) performed a finite element calculation to model crack tip blunting
based on a finite strain incremental plasticity theory under plane strain, small-scale
yielding conditions. He observed that finite strain effects become important only for
distances from the tip of the order of two or three times the crack opening displacement
o, (which will be defined in Section 4). Strong path dependence of the J integral was
also noticed within this region.

SHiH and GERMAN (1981) investigated the range of dominance of the plastic singular
fields for a wide variety of specimen configurations and material properties from
contained yielding to fully plastic conditions. They employed a small strain incremen-
tal plasticity theory and confined their attention to Mode I plane strain. MCMEEKING
and PARKS (1979) also investigated configuration dependence within the context of a
finite strain theory similar to that employed by McMEEKING (1977) under large scale
yielding. Thus, substantial work under Mode I plane strain conditions has been
performed to provide a better understanding of the mechanics of crack tip state and
also to specify size requirements for specimens used in fracture toughness testing to
ensure J dominance.

However, very little information is available in the literature pertaining to the
above issues under Mode I plane stress, despite its practical importance to structural
problems. A preliminary numerical investigation was carried out by HiLToN and
HuUTCHINSON (1971) under plane stress, small- (and large-) scale yielding conditions
in which the plastic singular fields were imposed in a small circle near the crack tip.
The value of J or some other equivalent plastic intensity factor was determined along
with the nodal displacements from the finite element solution. SHIH (1973) applied
their method to study combined Mode I and Mode 11 fracture problems under both
plane strain and plane stress. Both these studies employed a deformation plasticity
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theory and considered power-hardening materials. Also, the validity of the asymptotic
solution of HUTCHINSON (1968a, b) and RicE and ROSENGREN (1968) was assumed
over a length scale, which was not known a priori, although this was contained well
within the plastic zone in these numerical simulations.

Some of the issues mentioned above, pertaining to the range of dominance of the
asymptotic fields and the amount of non-proportional loading near the tip, which
have received considerable attention in the plane strain problem, have not been
examined in plane stress. Thus, detailed numerical work along the lines of Rick and
Tracey (1973), MCMEEKING (1977) and SHiH and GERMAN (1981) is required to
firmly establish a conceptual understanding of fracture under plane stress conditions.
This is usually more complex than in plane strain, primarily because the equations of
plane stress plasticity are somewhat more involved (e.g., HiLL, 1983).

In addition to the above considerations, a detailed numerical study of plane stress
fracture is important because of the possibility of a direct comparison with optical
experimental methods such as the method of caustics. This method, which has been
employed to determine the stress intensity factor in linear elastic fracture problems
(e.g., THEOCARIS and GDouTos, 1972), has recently been extended to applications in
ductile fracture (Rosakis, Ma and FREUND, 1983 ; Rosakis and FrReuND, 1982). A
knowledge of the range of dominance of the plastic singular fields is of primary
importance to facilitate a proper interpretation of experimental data (ZEHNDER,
Rosakis and NArRASIMHAN, 1986). Also, information from full-field numerical solu-
tions would be crucial in analysing the caustics obtained in regions outside the range
of dominance of any particular asymptotic field.

In this work, an elaborate finite element investigation, with a very fine mesh
elucidating the details near the crack tip, is undertaken to simulate Mode 1 plane
stress, small-scale yielding conditions. No attempt has been made in this part of the
work to incorporate the expected singularity in the strains by using special crack tip
elements. Computations have been performed for materials obeying an incremental
plasticity theory with no hardening and with a power-law hardening. In Section 2,
the numerical formulation, finite element scheme, etc. are outlined. In Section 3,
stationary crack tip fields under plane stress are reviewed. In Section 4, detailed results
are presented for the plastic zones, stress and strain distributions, and crack opening
displacement. Also, the path independence of the J integral is examined.

In Section 5, caustic patterns are simulated from the numerical solution at a wide
range of distances from the crack tip and are compared with experimental observations
(ZEHNDER ef al., 1986) and asymptotic results (RosaKrs et al., 1983). In Section 6, an
additional numerical analysis, employing singular elements near the crack tip, is
performed for the perfectly plastic case in order to examine the asymptotic stress and
deformation fields. The issue of sensitivity of the numerical results to the near-tip
mesh design is thus investigated. It is found that the dominant strain field near the
tip for perfect plasticity is completely different from the limit of the singular solution
of HuTcHINSON (19684, b) and RicE and ROSENGREN (1968) for materials with low
hardening. On the other hand, the numerical results for the near-tip stress field are in
good agreement with the slip line solution of HutcHiNsoN (1968b). In the light of this
observation, it is suggested that the configuration dependence of crack tip deformation
should be investigated under plane stress in the spirit of SHH and GerMaN (1981)
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and McMeexkiNG and PArks (1979). Such an analysis could be complemented by
experimental results based on caustics.

2. NUMERICAL ANALYSIS
Formulation

The Mode 1 plane stress, small-scale yiclding problem (Ricg, 1968b) was modelled
by considering a crack in a domain R, which was entirely represented by finite elements
as shown in Figs. 1(a) and (b). Only the upper half-plane was considered because of
Mode I symmetry. All field quantities are referred to with respect to an orthonormal
frame {e, e, e;} centered at the crack tip. The leading term in the displacements of
the linear elastic asymptotic solution,

", = KI/?; i,(0), 2.1

was specified as boundary conditions on the outermost boundary S of the domain.t
The loading was applied through the Mode I stress intensity factor K|, which occurs
as an amplitude factor in equation (2.1).

The maximum extent of the plastic zone surrounding the crack tip was at all times
within j; of the radius of the outermost contour S, so that the small-scale yielding
condition was preserved. All plastic deformation was confined within the active region
shown in Fig. 1(a), which has a total of 1704 four-noded elements and 3549 degrees
of freedom. The large region surrounding this active mesh has a total of 40 rings with
56 elements in each ring and remained elastic throughout the entire computation. The
constant stiffness of this region was statically condensed using a ring-by-ring static
condensation procedure that involved a partial forward Gauss reduction at each stage.

The cutout in Fig. 1(a) is a fine mesh region near the crack tip, which is shown in
detail in Fig. 1(b). This mesh was designed to have small rectangular elements parallel
to the crack plane instead of being focused at the crack tip. No attempt has been
made to incorporate the singularity of the plastic strains by using special crack tip
elements in this analysis {(see Section 6 and Rice and TrRACEY, 1973). This was becausc
the stress and strain fields at the end of the stationary load history were used as initial
conditions for simulating stable crack extension, which will be reported elsewhere.
The radius R, of the active mesh and the radius of the outermost boundary S are
about 385 times and 3400 times the size L of the smallest element near the crack tip,
respectively.

The Mode I symmetry conditions that are given by

F15(x.x, =0) =0 ‘
u(xy,x, =0) =0}" x; =0,

¥ Throughout this paper. Greek subscripts will have the range 1, 2. while Latin subscripts will take values
1.2,3.
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FiG. 1. Finite element mesh : (a) outer mesh ; (b) fine mesh near the crack tip.

were imposed by attaching stiff springs in the x, direction to the nodes ahead of the
crack tip. Traction-free conditions were imposed on the crackflank.

The type of element used was the four noded isoparametric quadrilateral, which
was formed from four constant strain triangles with static condensation of the internal
node. This element was suggested by NAGTEGAAL, PARKS and RicE (1974) to relieve
artificial mesh-locking effects that occur under nearly incompressible conditions in
plane strain. However, this problem does not arise in plane stress because there is a
non-zero out-of-plane strain component &;4, which is determined in terms of the in-
plane strain components &,.

Material idealization

The materials that were numerically modelled were the elastic—perfectly plastic
solids and isotropic power-hardening solids. A small strain incremental plasticity
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theory was employed along with the Huber-Von Mises yield condition and the associ-
ated flow rule. The Huber-Von Mises yield condition for isotropic hardening takes
the form,

f(6.&) = F(o)—6*(&"), 2.3)

where F(o) = {S-S and & = [(3¢¢})"*dr is the accumulated equivalent plastic
strain. In the above, S is the deviatoric stress tensor and 6(&”) is defined by the
following power hardening rule:

g (¢ ¢

=<J>~“. 2.4)

€o 0o o

For the elastic—perfectly plastic case, ¢ takes the constant value of ¢, the yield stress
in uniaxial tension. In equation (2.4), ¢, is the yield strain in uniaxial tension.

Within the context of the small strain flow theory of plasticity, the total strain rate
tensor can be decomposed into elastic and plastic parts:

§=&4e. (2.5)

The stress rate tensor ¢ is related to the elastic strain rate tensor é° through a constant,
isotropic, positive definite elasticity tensor C as

¢ = C§. (2.6)

The plastic strain rate tensor £” is normal to the yield surface and the flow rule takes
the form

yi .
& =3F, =18, 2.7)

where 4 > 0.
By using equations (2.3)—(2.7) the constitutive law for material currently experi-
encing elastic—plastic deformation can be obtained as

ipqgspy

I
4 =2 ki~
S’l Crlul‘Sur + 50- H

CiingSpgSmn Coml } . 2.8)

N
Gy = Cléy = |:Cijk/ -

In the above, H = d&/di” and can be obtained from (2.4) for hardening solids and is
set equal to zero for perfect plasticity.

In the present analysis, (2.3) and (2.8) were used along with the plane stress
constraint, which requires

oy =0 (2.9)

By using (2.9) in (2.8), an expression for ¢;, can be obtained in terms of €.
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Finite element scheme

A displacement based finite element method was employed in the analysis. The
finite element equations were derived from the principle of virtual work. At a time
(¢+ Ar) this takes the form

j a(t+At)-dedAd = J\ T(t+4At) duds. (2.10)
R OR

Here o(¢+Ar) represents the Cauchy stress tensor, which satisfies equilibrium at
time (f+Arf) and T{:+Ar) the imposed traction vector on the boundary JOR.
Also, du represents the virtual displacement vector that vanishes on the part of the
boundary where the displacements are specified and ds is the associated small strain
tensor.

After linearizing about the equilibrium configuration at time ¢ and introducing the
finite element approximation, the following incremental equilibrium equations are
obtained in matrix form (e.g., BATHE, 1982):

KAU = F(t4+ A1) —P(1). (211

Here AU = U(t+ At) —U(z) is the vector of nodal point displacement increments.
Also, Ky = {;B’DBdA is the tangent stiffness matrix corresponding to the con-
figuration at time ¢, B, the strain displacement matrix (¢ = BU) and D, the material
constitutive matrix. D will be equal to C for purely elastic response and C* for elastic—
plastic material response. F(z-+Ar) is the vector of externally applied nodal point
loads at time (r4Af) and P(r) = [;B'o(r)dA is the vector of nodal point forces
equivalent to the element stresses at time ¢.

In the present analysis, time is only a convenient variable that represents different
levels of load intensities. An iterative Newton-Raphson procedure (e.g., BATHE and
CiMENTO, 1980 ; BATHE, 1982) was employed in the solution of the incremental equi-
librium equations (2.11). This method is summarized in the Appendix.

Stress computation

As was observed above, the finite element scheme solves the displacement equations
of equilibrium in an incremental fashion. Hence, the constitutive laws presented earlier
that deal with stress and strain rates were used approximately to relate small finite
increments in stresses and strains. An explicit integration procedure also known
as the Tangential Predictor-Radial Return method was employed to integrate the
incremental stress-strain law. As shown by SCHREYER, KULAK and KRAMER (1979),
this method, if used with subincrementation (as in the present analysis), is very
accurate for plane stress conditions.

It is important to recall that the requirement of plane stress imposes a constraint
for the out-of-plane strain increment Ac,; in terms of the in-plane strain increments
Ag,s. Due to this constraint, it is more convenient to perform computations with stress
and strain tensors instead of with their deviatoric parts as is normally done in plane
strain. The method of stress computation is outlined in the Appendix.
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Solution strategy

As noted earlier, the loading was applied through the Mode I stress intensity factor
K, which enters the far-field displacement boundary condition (2.1). An initial load
step was performed in which K, was small enough to ensure that all the elements
remained elastic. K; was then scaled to cause incipient yielding in the element nearest
to the crack tip.

Subsequent load steps were performed by increasing K; by 5-10% of the incipient
value at a time and iterating for convergence to equilibrium. Each load step required
typically 3—4 iterations before converging to an accepted equilibrium configuration.
Yielding was continued till the plastic zone surrounding the crack tip had a maximum
extent of about 50 or 100 times the smallest element size L in order to guarantee
sufficient resolution near the crack tip.

3. StaTiIONARY CRACK TIP FIELDS
Power-hardening solids

HuTtcHINSON (1968a, b) and Rice and ROSENGREN (1968) investigated the asymptotic stress
and strain fields near a monotonically loaded stationary crack tip in an elastic—plastic solid.
The dominant singular term of their analysis will be referred to as HRR in the sequel. In their
work, a J, deformation plasticity theory and a power-law hardening idealization similar to
(2.4) were assumed.

The HRR analysis employs a small strain formulation and assumes a separable form in
polar coordinates r and 0, for the dominant term of the solution, to obtain

J 1ja+1
g, ~ (70|: r ] &i/(oa n)

ootol,r

J ain+ 1
g -~
&~ &g P &0, n)
0¢04n

In (3.1), 0, and ¢, are the yield stress and strain in uniaxial tension and # is the hardening
exponent. The angular factors &,(0, n) and &(0, n) depend on the mode of loading and on the
hardening exponent. The dimensionless quantity /,, which is defined in HutcHiNsON (1968a),
decreases from 5 for n = 1 to about 2.6 for n — oo under plane stress. J in (3.1) is the value of
the J integral of RicE (1968a).

For plane deformations, the J integral is defined for any path of integration I by

r—0. 3.1

J= j (Wv, —v,0,u; ) ds, (3.2)
r

where W is the local stress work density, v; a unit vector normal to I' and u; is a particle
displacement vector. For our purposes, I" will denote an open contour surrounding the crack
tip. The integral (3.2) has the well-known property of path independence for a wide class of
solids, including materials that obey the deformation theory of plasticity. Under smali-scale
yielding conditions, J can be evaluated from contours taken in the far-field (K dominated)
elastic region as,

J= - (3.3)

for plane stress. It is important to note that J enters (3.1) as an amplitude factor and hence
provides a unique measure for characterizing fracture initiation at the crack tip.
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The main limitation of the HRR analysis is the unknown range of dominance (e.g., with
respect to maximum extent of the plastic zone) of the singular solution. This issue is important
since this range of dominance should be large as compared with the fracture process zone and
the region near the crack tip where the small strain plasticity theory breaks down. From the
experimental standpoint, this information is crucial in the proper interpretation of experimental
data based on optical measurements (ZEHNDER et al., 1986).

Also, the discrepancy between the deformation theory and the more appropriate incremental
theory of plasticity has to be assessed from the context of crack tip fields. In addition, another
serious limitation that will be pointed out later occurs when the limit n — co is taken. This is
associated with the change in nature of the governing equations in the limit as the perfect
plasticity case is approached.

The above issues will be investigated from the point of view of the plane stress full-field
numerical solution presented here. This solution simulates small-scale yielding conditions and
employs an incremental plasticity theory.

Perfectly plastic solids : stress field

For perfectly plastic solids, the following important assumptions regarding the asymptotic
nature of the stress field are usually made:

oy(r,0) ~ 0;(6)

do;(r,0) doy;
a0

~a.f,-(9)=d0 , r—0. (3.4)

do; .
r ar o(1)

It is important to bear in mind that the field equations for perfect plasticity may be hyperbolic,t
while those for hardening solids are elliptic.

Equation (3.4) can be used to obtain asymptotic forms of equilibrium equations and the
Von Mises yield condition (RicE and TRACEY, 1973). These can be employed to show that only
two types of asymptotic plastic sectors can exist near the crack tip. These are as follows for
plane stress.

(i) Centered fan sector

In this sector, radial lines are stress characteristics and the asymptotic stress field has the
following form,

0, (0) = tocos(8—0,)
035 (0) = 215cos(8—0,) ¢, (3.3)
0,5(0) = 15in(0—0,)

where 0, is an arbitrary constant angle and t, is the yield stress in pure shear.

(ii) Constant stress sector
In this sector, the Cartesian components of the stresses are constant,
035 (0) = by. (3.6)

+ For perfectly plastic solids under plane stress, the governing equations for the stresses could be
hyperbolic, parabolic or elliptic (e.g., HiLL, 1983).
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8= 79.7°; 8,=151.4°

FI1G. 2. Analytical asymptotic field near a stationary crack tip in a perfectly plastic solid under plane stress
represented by stress characteristics.

The constants b,, are related by the yield condition. Straight lines along which the direct
components of the stress deviator S, vanish are stress characteristics (HILL, 1983).

HUTCHINSON (1968b) assembled a solution for the near-tip field comprising of a combination
of the above sectors as shown in Fig. 2. The region marked A is a centered fan sector extending
from 0 = 0° to 0 = 79.7°, while the regions B and C are two constant stress sectors, which
occupy the angles from 0 = 79.7° to § = 180°. The stresses in Sector A are as given by (3.5)
with 0, = 0. In particular, it should be noted that the stresses ahead of the crack tip (0 = 0)
are given by

gy =T 03 =215 0(,=0. 3.7

There is also a discontinuity in the o,, stress component between the two constant stress sectors
B and C, which is admissible as long as the crack remains stationary.

Perfectly plastic solids : deformation fields

As noted by Rice (1968a) in the case of plane strain, singularities in strains result when slip
lines focus at a point as in centered fan sectors. The displacements u; (or the rates i in a proper
incremental formulation (HiLL, 1983)) are functions of angle 8 as the crack tip is approached
within centered fan sectors resulting in a discrete crack opening displacement at the tip. The
following assumptions are often made (RICE and TRACEY, 1973) about the displacements u; (or
the rates u,) within centered fan sectors,

1w, (r,0) ~ u;(0)

Ou;(r0) w(0) = du

o . 3.8
20 awfi "0 (38

Ou,
ro— ~ o(l)
or

Since radial lines are stress characteristics in the fan, &, is nonsingular while &f;, (or £},) and
gy (or &) are singular as O(1/r) when the crack tip is approached within the fan. Thus, it is
possible to write
&y (0)

P . o
Ego ~ &9
P

&, (0)

»
& ~ &g

r—0 (3.9)

r

within fan sectors. The angular factors &,(0) and &2, (0) are non-unique and cannot be deter-
mined from a local analysis. They depend on a solution to the entire boundary value problem.
However, from the flow rule,
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. e 12 Sy
P — v .10
&) ( 2 ) Ty (3.10)

the following relation can be obtained between &3, and &7,

s,
& = s‘é’eS)’”, (3.11)
]

provided Sy, # 0. Although this equation strictly applies for the strain rates in an incremental
theory, it can be used to relate the total strains if the stresses remained constant at a material
point from the time it was enveloped by the plastic zone. Hence, it is expected to hold
approximately between the asymptotic angular strain factors &5, (6) and &5, (0).

The dominant HRR solution for the stresses (3.1) approaches the limiting slipline dis-
tribution of perfect plasticity as the hardening exponent » — co. But as has been observed by
LEVY er al. (1971) and Ric and TrRAcEY (1973) for plane strain, one cannot in general expect
the HRR singular solution for the strains as n — oo to be the dominant solution for perfect
plasticity because of the non-uniqueness noted earlier.

On the other hand, the strain components are (in general) non-singular in the constant stress
sectors and the same displacement results if the crack tip is approached along different radial
lines in these sectors.

An expression for the near-tip J integral can be obtained from the asymptotic form (3.9)
following plane strain analysis of RicE (1968a). Taking the contour I" in (3.2) to be a circle of
radius r, one can write (3.2) as

J = rf {Wcosl—a,le, cos— (e, —w)sin 8] —o,4[(e,6 + @) cos 0 — gy sin 8]} d6. (3.12)

In the above equation, w is the rotation, and

1
w= —s,9+o<;>, r—0. (3.13)
Also,
()
g, =o0|-
;
Ne r—0, (3.14)
W= Wp+0 <r>
where

= 2 12
wr = ) 6de¥ = 048" X 0, §a{}s{~} .

Taking » —» 0 in (3.12) and using the asymptotic equations (3.5), (3.9), (3.13) and (3.14), one
obtains

20(2) ” YRY ap y27172 P a7 win?
Jip = {2[(&5) > + (€5)71""? cos 0+ &%, sin 20+ 85, sin” 6} 6, (3.15)
\/EE 0

where 6* is the maximum angular extent of the fan.
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4. RESULTS AND DISCUSSION

The computations were performed for two levels of power hardening, # = 5 and 9
and also for the elastic—perfectly plastic case, which is referred to as n = oo in the
following discussion of the results. It should, however, be noted that the elastic-
perfectly plastic calculation was performed with H = dé/d&” = 0 in the constitutive
equation (2.8). The ratio of the Young’s modulus to the yield stress in pure shear
(E/t,) was taken as 1400 for the two cases of power-hardening and as 350 for the
elastic—perfectly plastic calculation. The Poisson’s ratio was taken as 0.3 for all cases.

Plastic zones

The plastic zone surrounding the crack tip is shown in Fig. 3 for the three values
of hardening exponent n. The crack tip is situated at the origin of the coordinate axes
that have been made dimensionless by the parameter (X,/c,)*. This parameter has
the unit of length and also contains a measure of the far-field loading. Hence, the size
of the plastic zone is expected to scale with respect to this parameter under small-
scale yielding conditions. A point in the figure represents a yielded integration station
within an element. It should be noted that the plastic zone becomes less rounded and
spreads more ahead of the crack tip with decreasing hardening (increasing »).

These plastic zones agree well in shape but are slightly smaller in size as compared
with the results of SHIH (1973), who employed a deformation plasticity theory and
used a singular element near the crack tip. The maximum extent of the plastic zone
that occurs ahead of the crack tip (8 = 0) is about r, = 0.22(K,/6,)?, 0.25(K,/6,)* and
0.29(K,/0,) for n =5, 9 and oo, respectively. For comparison, Shih’s calculation
indicates an r, of about 0.32(K/0,)" for n = 25, and TADA, PaRrIs and IRWIN (1973)
report r, = (1/n)(K,/0,)" for n = co based on an approximate calculation. The slightly
larger size of the plastic zone obtained by Shih could be due to the imposition of the
HRR singular solution in a small circle around the crack tip in his analysis. The
present computation introduces no such a priori constraint.

In Fig. 4 the numerically obtained plastic zone for n = 9 is compared with the visual
evidence of permanent plastic deformation observed on the surface of a thin compact
tension specimen (ZEHNDER ef al., 1986). The material used in this experiment was a
4340 carbon steel with a power-hardening exponent of 9 in uniaxial tension. The
experimental and numerical plastic zones agree well in shape and also in size when
the load levels in the experiment were small and there were no boundary interaction
effects (contained yielding).

Radial distribution of stresses

The distribution of the normalized opening stress, ¢,,/7,, along the x, axis ahead
of the crack tip and within the plastic zone is shown in Fig. 5. The centroidal values
of stress in the row of elements ahead of the crack tip have been used in making this
plot. Advantage has again been taken of the self-similarity noted earlier, with the
distance from the crack tip being measured in terms of the dimensionless variable
x1/(K,/64)*. The finite element results agree to within 1% with the HRR asymptotic
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stress distribution (3.1), which is shown by the solid lines in the figure, in the range
0 < x, < 0.08(K;/o,)". For example, at x, = 0.018(K;/5,)> the ratio of the finite
element to the HRR asymptotic stress is 3.13/3.14, 2.66/2.67 and 1.999/2.0 for n = 3,
9 and <o, respectively.

The values given by the HRR distribution for ¢, are higher than their finite element
counterparts by about 8% at the elastic- plastic boundary. This is in marked contrast
to the corresponding result in plane strain (e.g., TRACEY, 1976), where strong deviation
of the finite element solution from the HRR distribution was reported even for small
distances from the crack tip. Also, it should be observed from Fig. 5 that there is only
slight dependence of 0., on n for x, > 0.15(K;/5,). The finite element values differ
by less than 10% (with respect to n) in this range.

The radial variation of all the normalized stress components ahead of the crack tip
within the plastic zone for the elastic-perfectly plastic case is shown in Fig. 6. The
finite element values near the crack tip are in excellent agreement with the asymptotic
slipline solution of HUTCHINSON (Fig. 2). At x, = 0.01(K/5,)°, o, and 7,, are 0.98
7o and 1.999 7, respectively, which compares very closely with the values of 7, and
2z, given by the slipline solution (equation (3.7)). Also, Fig. 6 indicates that the o,
stress component has a strong radial variation ahead of the crack tip, with a value at
the elastic—plastic boundary of about 1.40 1,. This suggests curving of the leading
boundary of the fan at moderate distances from the tip.

The plane-stress Huber-Von Mises yield surface can be represented by an ellipse in
principal stress space in the following parametric form (Hir, 1983):

n

g, = 2tycos | @ — 6
( n) . 4.1)

g1 = 2’!7(] COS| w+ 6

w = w(r.0) J

For ¢, = o,, the angle o varies in the range 0 < w < n. The governing equations for
the stresses are hyperbolic if n/6 < w < 5r/6, parabolic if w = n/6 or 57/6, and
elliptic if 0 < w < n/6 or 57/6 < w < n. The value of w(r — 0, 0) corresponding to the
asymptotic stresses (3.7) is n/6, whereas the stresses at the elastic—plastic boundary
ahead of the crack tip give w(r,.0) & n/12. Thus, while the stress state ahead of the
crack is parabolic near the tip, it appears to be elliptic at the elastic—plastic boundary.

It is important from the viewpoint of optical experimental methods (such as caus-
tics) to determine the effect of the crack tip plastic zone on the stress and deformation
fields in the surrounding elastic region, in order to properly interpret the experimental
data. To examine this effect, the radial distribution of stresses in the ray ahead of the
crack tip is shown on an expanded scale in Fig. 7 for the two levels of hardening,
n =75 and 9. The stresses given by the singular elastic solution (K, field) are shown
for comparison by the solid line in the figure. It is found that the o, stress component
obtained from the numerical solution is higher than that given by the singular elastic
field at the elastic—plastic boundary (r = r,) by more than 30%. However, the stress
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distribution undergoes a rapid transition outside the plastic zone and differs from the
K, field by less than 8% for r > 1.5r,. Also, the stress distribution in the surrounding
elastic region seems to be quite insensitive to the hardening level.

Radial distribution of plastic strains

The radial variation of the normalized plastic strains &5, /¢, and &5, /¢, with respect
to normalized distance ahead of the crack tip is shown in Fig. 8 for the two levels of
power hardening. The HRR solution for the asymptotic strain distribution (equation
(3.1)) is shown by the solid lines in the figure. The finite element solution, although
slightly smaller than the HRR distribution near the crack tip, appears to indicate the
correct singular behaviour in the range r < 0.3r,. It should be recalled that a very
detailed mesh was used near the crack tip (Fig. 1(b)), and that the plastic zone was
quite large as compared with the smallest element size (at least 50 times) at the stage
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when these results were taken. These factors compensate to some extent for the
incorrect modelling of the singularity (3.1) by our using linear shape functions for the

crack tip elements.

The radial variation of the normalized plastic strains ahead of the crack tip for the
elastic—perfectly plastic case is shown in Fig. 9. The solid line in the figure is the limit



96 R. NARASIMHAN and A. J. ROSAKIS

75 T T T T T
L4
.
S50F ¢ B
.
.
.
%
25t \ ]
P w. PN
£ 5

A Numericat
hy p [ (n=a)
A €33
A A A €—
-50F a o} B
a —— HRR, Asymptactic
a {large n)
-75

1 i 1 1 1
0.00 Q.08 Q.10 Q.15 0.20 0.25 0.30
r

(KI/Go)Z

FiG. 9. Radial variation of plastic strains ahead of tip for perfectly plastic case. A vast discrepancy with
the HRR singular solution for large » (SHiH, 1973 ; ROSAKIS et «l., 1983) is observed.

of the HRR dominant singular solution for &5, /¢, for large n, which is given by (SHIH,
1973 ; ROSAKIS e al., 1983),

0, [ARR .97,
b““J ~ , 0=0, r-0, (4.2)
¥

80 H—

where

. LK
r,,:7I o)
0

The finite element solution for the strains seems to indicate the correct 1/r variation
near the crack tip (r < 0.04(K,/5,)?) but is about 3.3 times the values given by (4.2).

As has already been noted in Section 3, the HRR singular strain solution as
n — oo, cannot (in general) be expected to provide the dominant solution for perfect
plasticity because of the non-uniqueness in strains associated with the non-hardening
case. This discrepancy has also been observed in Mode 1 plane strain by LEVY ef al.
(1971) and Rice and TrRAcCEY (1973). In this connection, it should also be mentioned
that KNowLEs (1977), in working on the finite anti-plane shear field near a crack tip
in an incompressible elastic solid, with a similar power law behaviour has made an
important observation. He found that the first- and second-order terms in the asymp-
totic expansion for the displacements tend to become of equal importance, as one
approaches the equivalent of the “perfectly plastic” case in such solids. This raises
the question of whether the limit as » — oo of the most singular term in the asymptotic
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solution can be considered separately, without examining the limiting behaviour of
the higher-order terms of the expansion.

In order to resolve the issue further, a separate finite clement calculation for the
perfectly plastic case was performed under plane stress, small-scale yielding conditions
using a focusing mesh with singular elements near the crack tip, similar to the work
of RiCE and TRACEY (1973). The results of this investigation will be reported in Section
6. Finally, it should be noted that the region ahead of the crack tip, wherein the 1/r
variation of the plastic strains was observed (r < 0.04(K,/6,)?)}, corresponds to the
region of dominance of the asymptotic stress field (see Fig. 6). Beyond this range, the
front boundary of the fan may tend to curve and the 1/r variation for the plastic
strains may no longer be valid (RIcE, 1968a, b).

Crack opening displacement

The opening displacement between the crack faces as a function of position along
the crack flank is shown in Fig. 10 in the nondimensional form, §/(J/o,) versus
x,/(K]o,)?, for the three cases, n =5, 9 and oo. The linear elastic solution cor-
responding to » = | is also plotted for comparison. J in this plot is the far-field value
given by (3.3). From the figure, it can be observed that the amount of blunting at the
crack tip increases with decreasing hardening (or increasing #n). There is a discrete
opening displacement at the tip for the perfectly plastic idealization because of reasons
stated in Section 3.

On the other hand, the near-tip crack opening profile for the hardening cases,
computed on the basis of the HRR analysis, has the form (HUTCHINSON, 1968a ; RICE
and ROSENGREN, 1968),

8= 2uy(r,m) ~ 2r(3,)")Y'", r 0. (4.3)

In this expression, &,, which can be written as
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3 J -
5, = - 0,(g9, 1), 4.4
0

can be approximately interpreted as the opening distance between the intercept of
two 45 lines drawn back from the crack tip to the deformed profile. This definition
was suggested by TRACEY (1976) as a measure of the crack tip displacement for a
hardening material, since d(r = 0) = 0 in this case, as can be seen from (4.3). SHIH
(1981) has obtained the values for J,(,.n) from the HRR solution for both plane
stress and plane strain. It is found (SHIH, 1981) that §, is strongly dependent on n and
weakly on ¢,. Also, as n — ., J, becomes independent of ¢, and takes the value of
1.0 for plane stress.

From the present finite element calculation, the value of 8,/(J/ag,) was obtained by
extrapolating the near-tip crack profile to r = 0 for the non-hardening case and by
fitting the form (4.3) to the near-tip profile for the hardening cases. SHiH (1981) has
also computed the values of 8,/(J/o,) for several values of » from his finite element
solution (SHiH, 1973), which as noted earlier employed a deformation plasticity
theory. These results are summarized in the following table.

TABLE 1. Values of 6,/(J/cy) for plane stress

oo/ & n=>5 n=9 n =25 n= %
HRR 0.0012 0.40 0.63 0.89 1.0*
Present solution 0.0012 0.37 0.57 0.85
SHix (1973, 1981) 0.38 0.86

* (extrapolated).

The slightly smaller values for 9,/(J/a,) obtained by the present solution, as com-
pared to HRR for the hardening cases, can be accounted partially by some discrepancy
between flow theory and deformation theory as explained below. But the difference
between the present perfect plasticity calculation and the HRR non-hardening limit
is because the latter is unable to provide complete information regarding the most
singular term for the strains in the asymptotic solution for perfect plasticity, as
described above. This discrepancy has also been observed in plane strain. The pub-
lished numerical results (e.g., SHIH, 1981) for ¢,/(J/o,) under plane strain, small-scale
yielding conditions for the perfectly plastic case range from 0.63 to 0.66, whereas the
HRR non-hardening limit is 0.78.

J integral calculations

In order to assess the difference between the incremental formulation and the
deformation plasticity theory, the path independence of the J integral was checked.
The J integral (3.2) was computed for the hardening materials along several contours
surrounding the crack tip, which passed through the centroids of the elements. The
near-tip contours enclosing the crack tip were rectangular, while the far-field contours
were circular, in keeping with the structure of the mesh (Fig. 1). The integrand in
(3.2) was calculated, using the averaged values of stresses and strains at the centroids
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of the elements lying in the contour path, and the integration was carried out numeri-
cally using Gauss quadrature. It was found that very near the crack tip (» < 0.04r,)
there was a small amount of path dependence. However, after some distance away
from the crack tip, the calculated J value was virtually indistinguishable from the
remotely applied value (3.3).

For a contour with an average radius 7 = 0.012(K;/a,)?, the ratio of the calculated
J value to the remotely applied J was 0.96 and 0.95 for n = 5 and 9, respectively. For
contours with average radius 7 > 0.05(K,/o,)?, the calculated J value was smaller than
the applied J by less than 1%. While the 5% difference for the near-tip contours is
within the realm of errors in the discretization procedure and in the numerical inte-
gration of (3.2), it also suggests small amounts of non-proportional loading experi-
enced by a material particle from the time it was enveloped by the plastic zone. For
the elastic-perfectly plastic material, our accurate numerical solution of Section 6 was
used to estimate the near-tip J integral, and its discussion will be deferred till then.

In order to further check for discrepancy between the two plasticity theories,
&8, /e, was calculated for the hardening materials at the centroids in the row of
elements ahead of the crack tip by substituting the averaged stresses in these elements
into the expression given by the J, deformation theory. The plastic strain given
by the J, deformation theory was about 5% higher at r = 0.012(K,/o,)* than the
corresponding value given by the incremental formulation that was reported earlier
(Fig. 8). This difference progressively diminished as the distance from the crack tip
increased, and it was less than 1% for r > 0.1(K;/5,)".

5. NUMERICAL SIMULATION OF CAUSTICS
Introduction

The optical experimental method of caustics has been applied to the study of linear
elastic fracture problems and to the direct measurement of the stress intensity factors
(e.g., THEOCARIS and GDoUTOS, 1972 ; RosAKIS and ZEHNDER, 1985). This method
was recently extended to the measurement of the J integral in ductile fracture (ROSAKIS
et al., 1983 ; Rosakis and FREUND, 1982) on the basis of the validity of the plane
stress, HRR asymptotic solution.

Under conditions of small-scale yielding, the singular elastic field dominates well
outside the plastic zone. Inside the plastic zone, very near the crack tip, the HRR field
dominates. In the transition region between these two fields, no analytical solution is
available. This limits the applicability of caustics, and the conditions under which the
results reported by RoOsAKIs ¢f al. (1983) and RosAakis and FREUND (1982) are valid,
are uncertain. Also, errors may be caused in the measurement of K; based on the
caustics obtained from the elastic region surrounding the plastic zone. This is because
the crack tip plastic zone affects the caustic patterns, and an analysis based on the K
field may be erroneous.

In this section, the full-field numerical solution under small-scale yielding is used
to generate simulated caustic patterns. The numerical caustics are compared with the
corresponding patterns observed from experiments (ZEHNDER e? al., 1986). The
analysis of caustics based on the numerical results is not limited by the assumption
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Fig. 11. Formation of caustic due to reflection of light from a polished, deformed specimen surface.

of the validity of any particular asymptotic field. Finally, qualitative and quantitative
comparisons of the simulated caustics, obtained at various distances {from the crack
tip, are made with the corresponding results based on the near-tip HRR analysis and
the remotely applied K, field.

The method of caustics

Consider a set of parallel light rays normally incident on a planar, reflective speci-
men that has been deformed by tensile loading. Due to the deformed shape of the
specimen, an envelope in space called the “caustic surface™ is formed by the virtual
extension of the reflected light rays (Fig. 11). The intersection of this surface with a
plane located at a distance =, behind the specimen is called the “caustic curve” and it
bounds a dark region called the “"shadow spot™.

Let (v, x,) be a coordinate system on the specimen surface centered at the crack
tip and (X, X,), a system translated by a distance z,; behind the specimen surface.
Then the mapping of a point (x,, x,) on the specimen surface to a point (X, X») on
the planc at z, due to reflection of a light ray may be described by (Rosaxis and
ZEHNDER, 1985)

X, = x, 42z, al¥u ) (5.1)
o,

The locus of points on the specimen surface at which the Jacobian determinant of the
mapping (5.1) vanishes is called the ““initial curve™. While points on the initial curve
map onto the caustic curve, all points both inside and outside the initial curve map

outside the caustic. The position of the initial curve may be varied by changing z,.
For a stationary crack under small-scale yielding conditions, if the initial curve is
chosen to fall well outside the plastic zone and within the region of validity of the K
field (large values of z,). then the resulting caustic curve will be an epicycloid (Fig.
12(a)). In such a case, K| is related to the caustic diameter D (which is the maximum
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(6)

Fi1G. 12. Predicted caustic shapes based on (a) X, field and (b) HRR asymptotic field for n = 9.
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width of the caustic in the X, direction) by (ROSAKIS and ZEHNDER, 1985),

K = ED> 5.2
"0 7z0vh° (5-2)
where # is the specimen thickness. The initial curve is circular and its radius r, is given

by
ro = 0.316 D. (5.3)

On the other hand, if the initial curve is chosen to fall well inside the plastic zone
and within the region of dominance of the HRR field (very small values of z,), then
its shape as deduced by Rosakis ef al. (1983) will no longer be circular. In such a
case, the radius r, of the point on the initial curve that maps to the maximum value
of X, on the caustic curve is given by

ro = 0.385D, (5.4)

for a hardening exponent n of 9. Also, the value of the J integral may be obtained
from the caustic diameter D as (ROSAKIS ¢t al., 1983),

0_(2) E (n+ 1)in N
J — S D(311+_)'nw 55
"E |:0'0~"'oh:| ¢-3)

where S, is a numerical factor dependent on #. Caustic curves thus obtained from the
HRR field for several values of the hardening exponent are given by ROSAKIS ef al.
(1983). A typical caustic for n = 9 is shown in Fig. 12(b).

Results and discussion

The discrete values of the out-of-plane displacement 1, obtained from the numerical
solution at the centroids of the elements were smoothed using a least-squares finite
element scheme as advocated by HINTON and CaMPBELL (1974). The surface thus
generated is shown in Fig. 13 for a material with a hardening exponent of 9. Caustic
patterns were simulated by mapping light rays point by point from this smoothed
surface using (5.1) for different values of z,.

The sequence of caustics simulated from the finite element solution for different
values of z, is shown in Fig. 14 for a material with » = 9. The parameter r,/r, in the
figure is the ratio of the initial curve size to the maximum plastic zone extent. The
initial curve size r, was estimated approximately by using (5.4) for caustics from
within the plastic zone and by (5.3) for caustics from outside the plastic zone. It is
seen from the figure that for ry/r, = 0.19, the simulated caustic agrees in shape with
the caustic predicted by the HRR field. which is shown in Fig. 12(b). When r/r, = 1.3,
the numerically simulated caustic, Fig. 14(f), agrees with the caustic predicted using
the elastic, K, field (Fig. 12(a)).

A sequence of photographs of caustics (ZEHNDER et al., 1986) obtained from the
tensile loading of a thin compact tension specimen of 4340 carbon steel is shown in
Fig. 15. The experimental details, specimen dimensions, etc. are described by ZEHNDER
et al. (1986). On comparing Figs 14 and 15 it is seen that in both cases there is a
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X3

FI1G. 13. Smoothed out-of-plane displacement field for n = 9.

transition from an “HRR caustic” to an “elastic caustic” as ry/r, goes from 0.19 to
1.4. The transition away from the HRR caustic appears to take place slightly sooner
in the numerical model (around ry/r, = 0.3) than in the experiment (around
ro/r, = 0.35). However, the general trend is similar in both cases.

It is found that both the numerical and experimental caustics retain the shape
predicted by the K| field even for ry/r, as small as 1.0. Thus, the effect of the plastic
zone cannot be judged by mere observation of the caustic shape. The reason for the
invariance in shape of the caustics is explained by examining the angular variation of
the sum (0,,+0,,), of the direct stress components (as given by the numerical
solution), at different distances outside the plastic zone as shown in Fig. 16. It is seen
that the sum (o,,+0,,) generally follows the angular distribution given by the K|
field, which is shown by the solid line in the figure even for ry/r, as small as 1.2.
However, the individual stress components show more deviation from those of the K,
field for small values of r,/r,. This observation is important, since the caustic shape
depends on the angular variation of the out-of-plane displacement component u-,
which in the elastic region, is proportional to (¢, +0,,) under plane stress. Thus, it
is not surprising that the caustic shape resembles the “elastic caustic” for ry/r, as
small as 1.0.

The numerical caustics were simulated for a fixed value of K| (or the far-field value
of J as given by (3.3)) by varying z, in the optical mapping (5.1). The relationship
between the diameter D of the simulated caustics and the remotely applied J value is
shown in non-dimensional form in Fig. 17. The inverse of the abscissa in the figure is
an indication of the initial curve size or the distance from the crack tip at which the
information about the deformation field is being scrutinized. Thus a very small
abscissa value (large z, or small J) implies that the initial curve is far away from the
tip. A very large abscissa value, on the other hand, implies that the curve is very near
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the tip, probably within the range of dominance of the HRR field. The bars on the
numerical results indicate the uncertainty in determining the initial curve due to
discretization of the finite elements.

The solid line in the figure represents the variation of caustic size in the K; dominated
region as given by (5.2) with v = 0.3. The dashed line gives the relationship for the
caustics from the HRR-dominated region (5.5). As can be observed from this figure,
the numerical results approach the elastic relation (5.2) for small abscissa values and
the relation (5.5) obtained from the HRR solution for large values of the abscissa. In
the intermediate region there is a transition from one distribution to the other.

6. SNGULAR FrnitE BELEMENT ANALYSIS
Introduction

In this section, a detailed investigation of the perfectly plastic case will be presented,
with the view of examining closely the discrepancy between the numerical results for
the near-tip strains and the corresponding term of the HRR solution (non-hardening
limit), which was noted in Section 4. For this purpose, a singular finite element analysis
similar to the plane strain work of RicE and TracEY (1973) was carried out under
Mode I plane stress, small-scale yielding conditions. A ring of focused isosceles
triangular-shaped elements was used near the crack tip in this computation. This mesh
design is different from the fine mesh employed in the earlier analysis (Fig. 1(b)).
Thus, the issue of sensitivity of the numerical results presented earlier in Section 4 to
the near-tip mesh design was also examined through this section of our work.

Numerical scheme

The near-tip elements that were employed here provide a capability for non-unique-
ness of displacement at the crack tip (LEVY ef af., 1971 ; Rick and TrRACEY, 1973),
which is the fundamental feature of the 1/r plastic strain singularity within centred
fan regions (Section 3). This was achieved by treating the triangular elements at the
crack tip as degenerate isosceles trapezoids that have a total of four nodes (one at
each vertex) with two nodes coinciding at the crack tip (Fig. 18). The coincident nodes
at the crack tip were constrained to move as a single point till the load level at which
incipient yielding was detected in one of the near-tip elements. A special shape function
(Rice and TrRACEY, 1973) was used up to this load level to provide the crack tip
elements the capability to model the l,/’\/r dominant elastic strain singularity. Sub-
sequently, the coincident nodes were allowed to move independently and the crack
tip elements modelled the 1/r plastic strain singularity.

The mapping of a four-noded rectangle to a triangle (Fig. 18) can be described by

=80+ | d=8)0=m A=y | (4
=X 4 + X 4 + X 4 + X 4 N
(6.1)

with the constraint x’ = x’/. Here (£, #) is the natural coordinate system for the element
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F1G. 16. Angular distribution of (¢,,+0,,) for different distances from the tip. The solid line is the
distribution given by the K, field.
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and (x,x,) 1s a global coordinate system centered at the crack tip. The inverse
mapping of (&£,1) in terms of a local Cartesian coordinate system (s, 1), and a local
polar coordinate system (r. ) for the element is given by (Fig. 18),

2s }

s tan
= . o
! {to/80) tanx

|
E?. (6.2)
J

The elastic singularity element has the shape function (R1cE and TracCEy, 1973),

) 14 l—n) [1+¢ b f14¢
uzll”(l “\/ 25>+UA( 2’7)\/ 2%-}*“/(2}7)\/ 25. (63)

Here u” represents the unique displacement of the crack tip nodes i and j. The above
element correctly models the \g‘/r variation in the leading term for the displacements
of the linear elastic solution. Also, displacement compatibility is satisfied along the
edges i-7and j-k (5 = + 1) with the adjacent singular elements and along the edge /-
k (¢ = 1) with the conventional four-noded isoparametric element that is joined there.

As was first pointed out by LEvy ef al. (1971), the mapping of any four-noded
isoparametric clement to a triangle leads to a 1/r strain variation provided that
the coincident nodes are permitted to have different displacements. The crack tip
displacement for such an element is given by (Fig. 18),

(u'+w) (v —w)
- 54 + - 5* -

u(—1l.n) = (6.4)

Following the notation of (3.9) and neglecting the elastic strains that are bounded, it
can be shown from (6.4) that
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ggJ:""
K oy \2tanu

= ( ey ){—(u§~u§)tanw+<a;~u§}1

\ (6.5)
== (5‘7'3- ) [ = ) + (s =) tan )

oq o

where u, and u, are the displacement components in the local (s, t) Cartesian coordinate
system and ¢ is the angle measured in the local (r, ) polar coordinate system (Fig.
18) for the element. It should be noted that the right-hand side of (6.5) is a first-order
finite difference approximation to £,(¥) and &,(¥). Also, it should be noted that if
the two coincident nodes displace as a single point, so that u’ = #/, then this element
behaves as an ordinary constant strain triangle.

The mesh employed in this analysis was similar to the one used by LEvY er al.
{1971). Only the upper half-plane was considered because of symmetry. The active
mesh consisted of 20 rings with radii of L, (1.5 L, (2.0)* L, ..., (9.5 L, (10.0)° L
and 115 L. These were divided by 25 rays at equal angular intervals of 7.5, giving a
total of 525 nodes (including 25 coincident crack tip nodes) and 480 elements in the
active mesh. The region outside consisted of 14 rings with 24 elements in each ring
and always remained elastic. Static condensation was employed in this region as
described in Section 2. The radius of the outermost boundary S on which the dis-
placement boundary condition (2.1) was specified was 645 L. The loading process
was stopped when the maximum plastic zone extent was about s of the radius of the
outermost boundary S, so that the small-scale yielding condition was preserved. The
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elastic solution.

symmetry condition (2.2) on the 0 = 0 ray and the traction-free condition on the
0 = m ray were enforced.

Every near-tip element was composed of three subelements (Rice and TrRACEY,
1973), each extending to one-third of the height of the element. A nine-point numerical
integration scheme was employed to integrate the element stiffness matrix, with
integration stations at (£, = — 3,0, 1) and weighting factors of § of the area of the
element. For the isoparametric elements outside the innermost ring, the two-by-two
Gauss quadrature scheme was used. The solution strategy was the same as that
described in Section 2 with the additional modifications mentioned earlier in this
section.

Results and discussion

It can be shown by substituting the dominant term of the elastic solution for the
stresses into the plane stress Von Mises yield condition that incipient yielding
will occur at an angle of arccos (}) & 70.5°. Also, the value of the load parameter,
K{/(au\/inr}.), calculated from the analytical solution is 0.866 for initial yielding at
a radius of r,. Incipient yielding occurred in the present finite element compu-
tation in the subelement between 67.5° and 75° with a mean angle of 71.25". The
value of K{j(aﬂ\,@ml.) was 0.83, which is in good agreement with the analytical
prediction.

The radial distribution of stresses along the ray ahead of the crack tip at incipient
yield is shown in Fig. 19 in the nondimensional form, a/t, versus r/(K/c,)". The
stresses given by the finite element solution are in excellent agreement with the
dominant elastic solution, which is shown by the solid line in the figure. Also, the
angular distribution of stresses within the crack tip elements compared closely with
the analytical solution.

The plastic zone at the end of the stationary load history is shown in nondimensional
coordinates in Fig. 20. This compares very well, in overall features, with the plastic
zone obtained in the earlier analysis (Fig. 3). The maximum plastic zone extent is



Analysis of small-scale yielding 111

020
015
*2
(K /o6 % 0lo ]

005 » 5\3&;'3 LT

.. L. ]
20 025 030 035

FiG. 20. Plastic zone for the perfectly plastic case obtained from the singular finite element analysis.

about r, = 0.28(K/0,)* ahead of the crack tip. In the subelements nearest to the crack
tip, yielding spread only from 6 = 0 to 75°, which is in approximate agreement with
the centered fan region of Fig. 2.

The radial stress distribution ahead of the crack tip within the plastic zone also
appeared similar to the variation reported earlier in Fig. 6. In the subelement nearest
to the crack tip that occupies the angular range from 0 = 0 to 7.5°, the stresses o,
and a5, reached the constant values 0.99 7, and 1.999 t,, respectively, which agrees
very well with the analytical asymptotic limit (3.7). Once again, a strong radial
variation in the ¢, stress component was observed along the 8 = 0 ray, with a value
at the elastic—plastic boundary of 1.40 1.

The angular distribution of the normalized stress component gg/7¢, Within the
subelements nearest to the tip, is shown in Fig. 21 along with the slip line solution
(solid line) of HuTCHINSON (1968b). The finite element solution shows good agreement
with the analytical distribution in the angular range 0 < 6 < 80°, which corresponds
to the centered fan region in Fig. 2. This was typical of the other two stress components
g,s and o,, as well, with g, showing more deviation from the analytical solution as
0 — 80°. This result is consistent with the fact that the two constant stress sectors in
Fig. 2 were not detected by the finite element solution. Also, the numerical result
suggests that within the fan, the focusing of the slip lines may occur very close to the
crack tip in the angular range 65° < 0 < 80°.

The normalized crack tip opening displacement J,/(J/a,), where J is the remotely
applied value of the J integral, was calculated based on the crack tip node lying on
the 6 = x ray. It increased from zero at incipient yield (K; = K7) to a constant value
of 0.84 at K; ~ 3.5 K{. This value did not change during the subsequent part of the
loading process. The variation in 8,/(J/oy) during the initial phase of the loading
process occurred since the plastic zone was not fully developed. It should be noted
that this quantity is in excellent agreement with the value reported in Table 1, which
was calculated on the basis of the earlier analysis.

The displacements of the crack tip nodes were substituted into equation (6.5), with
Y = 0 (corresponding to the mean angle of the near-tip element), to determine the
angular factors &,(8) and &%,(0) of the dominant 1/r strain singularity (3.9). In order
to compare with the dimensionless angular factors &5 (6, n) given by the HRR analysis
(equation (3.1)) for large n, the functions £5,(6) and &7(8) obtained from the present
finite element calculation for the perfectly plastic case were normalized as follows,
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Here I, is taken as 2.6 corresponding to n — o0 in the HRR solution. The functions
thus obtained are shown along with the HRR distribution for n = 25 (which is given
by SHix (1973)) in Fig. 22. It can be seen that the two angular functions are completely
different. It is interesting to note that the numerical solution for the perfectly plastic
case under small-scale yielding conditions gives vanishingly small values for the
angular factors of the dominant !/r strain singularity for ¢ > 45°, although the slip
line solution of Fig. 2 shows a centered fan extending from # = { to about 80°.

It is found that the angular factors &, and &, obtained from the numerical solution,
satisfy almost exactly the following relation,

) o
éa&—wwfm 6.7

which is analogous to equation (3.11), as applied to the accumulated near-tip plastic
strains. Also, as was observed from the near-tip strain distribution (Fig. 9) of the
earlier analysis, it is again found from the present computation (Fig, 22) that
&, (0 = 0) for the perfectly plastic case is about 3.3 times the corresponding value
given by the HRR analysis for large n.

The near-tip value of the J integral was calculated by substituting £3,(8) and
£5,(8) obtained above into equation (3.15). The integral in (3.15) was estimated
numerically, and it was found that Jy, is about 0.95 times the remotely applied J
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value. This is somewhat different from the development in plane strain where TRACEY
(1976) reported Jy;, to be about 0.8 times the applied J value. But later, SHiH (1981)
found Jy;, to be 0.96 times the applied J from his finite element calculation under plane
strain, small-scale yielding conditions for the perfectly plastic case based on a different
type of singular element.

If the near-tip J computed above from the present analysis is used to normalize the
crack tip displacement &,, it is found that §, = 0.88(J;,/0,). Hence, it is concluded
that §,/(J/a,) for the perfectly plastic case under plane stress, small-scale yielding
conditions could vary from 0.84 to 0.88.

In closing, it is observed that all the results given above by the present accurate
numerical computation are in good agreement, in every respect, with the earlier
analysis, which employed a nonfocusing mesh with nonsingular elements near the
crack tip. The earlier analysis relied purely on the fineness of the mesh and a large
plastic zone to the smallest element size ratio to provide sufficient resolution near the
crack tip.
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APPENDIX

Newton-Raphson method for equilibrium iteration

It was obscrved in Section 2 that an iterative Newton-Raphson method was used in the
solution of the incremental equilibrium equations (2.11). This procedure is summarized below
for the kth equilibrium iteration of the (¢4 A¢)th time step.

(1)
@

)

4

(5)

(6)

The externally applied load is increased and F(z+ A¢) is calculated.

The tangent stiffness matrix K5~ ' (7+A¢) and the vector P~ '(t+Ar) = (B'6* ™ '(1+ A1) dA4
are calculated. For the first iteration of the time step (k = 1), the above vector is com-
puted from the converged solution at the end of the previous time step as P°(1+A¢) =
[xBa(1) dA.

The following matrix equation is solved by Gauss elimination :

Ki'AUF = F(t+At)—PX ' = AR
The nodal displacements and element strains are updated as follows,
Ur(t+ A = U 1@+ A+ AUF
& (t+At) = BU (1 +Ar).
For the first iteration of the time step (k = 1),
U'(t+At) = U(t)+AU".

In order to prevent fictitious (numerical) elastic unloading of elements in some parts of the
plastic zone during the subsequent iterations (k > 1) of the time step, a path independent
scheme is used to update element stresses. The stresses are estimated by integrating from
the values at the end of the previous accepted equilibrium configuration to the current
iteration of this time step by using the cumulative strains as follows (BATHE, 1982),

251+ Ar)

¢ (1+Ar) = o(1) + j Dde

a(r)

An explicit method was employed to evaluate the integral in the above equation.

The Euclidean norm of the out-of-balance force vector AR* (see Step (3)) and the internal
energy increment are checked for convergence by comparing with the corresponding values
at the start of the iteration process as (BATHE and CIMENTO, 1980),

IAR® ) < 5, ]|AR" .
AU*-AR* < §,AU' - AR,

where 6, and J are small, preset tolerances.
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FiG. 23, Stress computation in the finite element scheme based on an explicit integration of the incremental
constitutive law.

If convergence is nof achieved, control is returned to Step (2) to perform the next iteration.
If convergence is achieved. control is returned to Step (1) to perform the next time step.

Explicit integration of incrementd constitutive leny

The method of stress computation mentioned in Section 2 is outlined for an isotropic
hardening solid below.

(1) After solving the finite clement equilibrium cguations for the nodal displacement
increments AL, the strain increment Ag is obtained as

Ag = BAU,

where B is the strain-displacement matrix.
{2} An elastic estimate Aa¥ for the stress increment is computed as

Ae” = CAs.

{3) A trial stress state ¢” = 6"+ Ag” is calculated from the stress state 6° at the beginning of
the iteration. Here 6" is taken to be inside the yield surface (Fig. 23) for the sake of
definiteness.

4) If Fle™)—(6")* < 0, where ¢° is the value of ¢ at the beginning of the ieration. then the
elastic behaviour assumption holds and the remaining steps in this method arc omitted.
Otherwise, the yield surface has been crossed during the trial stress incrementation (Fig,
23).

(5) The contact siress state ¢ is obtained as

6" = "+ yAa’,

where 0 < ¢ < | and F{e)— (6"} = 0. This condition for the Von Mises yield function
leads to a quadratic equation in ¢. It should be observed that the path from 6° to 6°
constitutes {ully elastic material response.

{6} A stress statc ¢’ is obtained as
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. . Ax
¢ = 6(+C<{i—-g)ﬁs—;&)

. . Ar
=6 + ((a‘b*uf) - ; CF,).

In this equation, F, is taken as the normal to the yield surface at the stress state ¢°. Also,
A is evaluated corresponding to the stress state o©.
The yield surface is updated as

G = G0 H{GV)AZ,
where

- . do
AF = 1Ai6° and H{gﬂ}:ﬁgjﬁ“s

which can be obtained from (2.4) for hardening solids and is set equal o zero for perfect
plasticity.
Due to the finite nature of the time step, the stress state 67 obtained in Step (6) will not
{in general) lie on the updated yield surface. 67 is then simply scaled as follows,

. " ,

g == | e |G

NET Y

The path from 6 to ¢” constitutes elastic—plastic material response. In order to minimize
the error due to the use of finite increments, the excess stress of —o¢ is divided into m
subincrements, and Steps {6} to (8) are carried out m times with the subincrements.



