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SUMMARY
The problem considered here is that of the application of a constant force to an

infinite three-dimensional, linear, elastic, isotropic, homogeneous layer. This force is
assumed to be concentrated at any internal arbitrary point. The method of solution
is based on the use of integral transforms. The determination of the distribution of
stresses and displacements at all points of the solid are calculated in terms of
convergent semi-infinite integrals.

The exact solution of the stress and displacement fields for an infinite plate is
obtained when the concentrated point load is either close to or distant from the
observed point. In the first case the Kelvin state solution, of the problem of a
concentrated load at a point of an elastic medium occupying the entire space, is
recovered. In the second case, the solution of an infinite thin plate is reproduced.

In section 3 the governing partial differential field equations, defined in section 2,
are reduced to a system of ordinary differential equations by the use of the
two-dimensional Fourier transform, taken with respect to the two in-plane geometric
variables. Analytical expressions for the stresses and displacements are then
obtained for the particular case of concentrated body forces, represented as Dirac
delta functions (section 5).

Representative stress and displacement components are plotted in the last section
of the paper.

1. Introduction

THE problem of a single elastic layer in equilibrium was first considered by
Dougall (1), who conducted an extensive study of a thick plate subjected to
arbitrary (surface or internal) loading using potential functions. Teodone (2)
also dealt with this problem by using the method of mapping. Later,
Orlando (3) obtained the solution of the layer under surface tractions.

In addition to these works, Lur'e (4, 5) proposed a method to construct
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84 F. G. BENITEZ AND A. J. ROSAKIS

particular solutions of the equations of elasticity for a layer subjected to
surface loads.

Marguerre's paper (6) contains numerical results of the solution of the
problem of a layer compressed by concentrated forces. Also, Shapiro (7)
and Sneddon (8) analysed the distribution of stresses in an infinite layer for
the case of normal loading, uniformly distributed over the area of a circle on
the surface; besides this, Sneddon evaluated the stress field under an
approximation assumption which allowed him to obtain closed-form expres-
sions for the semi-infinite integrals presented in his work.

The object of this paper is to apply the transfer matrix formulation, used
by Vlasov and Leont'ev (9) and generalized by Bufler (10), to the problem
of a three-dimensional layer containing an internal concentrated unit load,
which may act perpendicularly or parallel to the faces of the solid.

As an initial hypothesis no approximation is assumed except small
deformations.

2. General equations
Suitable combinations of the balance law and constitutive equations of a

homogeneous, isotropic linear elastic body, in component form, can be
presented in the form of a matrix differential equation (10, 11, 12), namely

^ = Aa + C, (2.1)
dz

b = Ba, (2.2)

where a and b define the column vectors

a = (ozz, azx, azy, uy, ux, uz)
T, (2.3)

b = (oxx + oyy,oxx-oyy,2oxy)
T, (2.4)

x, y, z are spatial Cartesian coordinates in a three-dimensional Euclidean
space, the superior T stands for the transpose of a vector and matrices A
and B are given in (11, 12).

The column vector C is

C = (-Fz, -Fx, -Fy,0,0,0)T,

where Fx, Fy, Fz stand for the body-force components.

3. Infinite layer: transformed general equations
The matrix differential equation (2.1) relates the z-coordinate partial

derivative of vector a to the vector a itself. The vector a is composed of the
components of the traction acting on a constant-z plane as well as the
components of the displacements.

If x, y are the in-plane coordinates of the layer and z is the coordinate

 at C
ornell U

niversity L
ibrary on June 22, 2015

http://qjm
am

.oxfordjournals.org/
D

ow
nloaded from

 



A POINT FORCE IN A LAYER 85

perpendicular to the faces, the matrix partial differential equation (2.1) can
be transformed into an ordinary matrix differential equation by using the
two-dimensional Fourier transform with respect to the coordinates x, y.

Thus, expressions (2.1) and (2.2) yield

^ = Aa + C, (3.1)

b = Ba, (3.2)

where a, b and C are the geometric Fourier transforms of the original
vectors, defined according to Sneddon (13) and Buffer (10).

The vector a will be referred to as the state vector.

4. Matrix differential equation

Equation (3.1) is an ordinary matrix differential equation which can be
solved using the Cayley-Hamilton theorem (14).

For an arbitrary point at a distance z from the lower surface of the layer,
the state vector is given by

a(z) = X(z)X-1(0)a(0) + X(z) f X~\s)C(s) ds, (4.1)
Jo

where a(0) represents the initial value of a at z = 0, X(z) is the fundamental
matrix defined by the matrix of eigenvectors of A postmultiplied by the
matrix of eigenvalues of A and s is a dummy variable.

4.1. Flexibility matrices

Expression (4.1) can be written as

a(z) = T(z)a(0) + R(z), (4.2)
where

T(z) = X(z)X~1(0) and R(z) = X(z)\ X~\s)C(s)ds.
Jo

The state vector a is composed of stresses and displacements in the
following way:

If we are interested on relating displacements to stresses, for example
stresses are known by the boundary conditions of our problem, this can be
done using (4.2) in the form

/d(z)\ = /Tu(z) T12(z)\/a(0)\ /R,(z)\

\u(z)) \T21(z) T 2 2 ( Z ) / \ M ( 0 ) / \ R 2 ( Z ) / '

where Tl7(z) (i,; = 1, 2) stand for the submatrices of T(z) and R,(z) are two
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86 F. G. BENITEZ AND A. J. ROSAKIS

column vectors containing the first three and the last three components of
R(z) respectively.

4.2. Internal-point state vector
For an arbitrary point, inside the layer, equation (4.2) holds. Also, for

z = h, we obtain

Substituting u(0) from above into (4.2) we get

u(z)) = VT21(z) - T22(z)T1-2
1(/i)T11(/t) T22{z)T^{h)Ka{h))

(4.3)

which represents the transforms of the stresses and displacements of any
arbitrary point with respect to the transforms of the tractions on the surfaces
and the transform of the applied body forces.

5. Infinite layer with concentrated body forces

In this section we shall consider the solution of a layer subjected to
concentrated forces of unit magnitude acting in an arbitrary direction and
applied to any internal point.

Let | (0, 0, H) be the point where the force is applied and \(x, y, z) be
the point of observation, as depicted in Fig. 1. If 6{x, y, z) stands for the
Dirac delta function defined in the geometric domain, arbitrary forces in the

FIG. 1. Single layer with unit internal load applied to a given point. The
point x is an arbitrary internal point
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A POINT FORCE IN A LAYER 87

three directions will be expressed as:

F' = (6(x,y,z-H),0,0)T,
Fy = (0,8(x,y,z-H),0)T,

F2 = (0,0,8(x,y,z-H))T,

where the superscript (x, y, z) denotes the direction of the unit load.

5.1. Internal-point state vector
In this particular case of concentrated body forces, we shall write

a(0) = o(h) = 0.

It follows from (4.3) that

-H)\(a(z)\ = /-T12(z)T1-2
1(/i)R1(A) + R,(

\u(z)) \-T22(z)Tn\h)^{h) + -R2{
with

for all z > / / ;
for all z < H.

5.2. Analytical expressions for the stresses and displacements
From equation (5.1), the expressions for the stresses and displacements

defined in (2.3) can be inferred. Also, making use of the transformed
stresses and displacements given by (5.1) and by means of the equation
(3.2), after performing the inverse transforms, the rest of the stress
components will be obtained.

The analytical expressions obtained in that way are given in terms of
infinite integrals. Close inspection of the expressions for the stresses ozz,
o~zx, ozy, oxy (when the unit load is applied along the x-, y- or z-direction),
or o^ and ayy (when the unit load is applied along the x- or y-direction),
demonstrates that the resulting integrands exist and are well behaved for
every A e [0, °°). For A-»0, this was shown by expanding the integrands in
ascending powers of A and proving that the resulting expressions vanish as
A—»0. For A—»<», this was shown by replacing the hyperbolic functions
involved by their equivalent exponential forms and demonstrating that the
limit of the resulting expression, as A-*oo, vanishes.

On the other hand, analysis of the equivalent expressions for the
displacements and for the stresses a^ and ayy (when the unit load is applied
along the z-direction) shows that although the integrands involved are well
behaved as A—>°°, they become singular as A-»0. In fact, expansion of
these integrands in ascending powers of A reveals terms of the form

"\ A-»0; (5.2)
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88 F. G. BENITEZ AND A. J. ROSAKIS

(A and B are known functions of % = zlh, xp = H/h and Rlh = (x2+y2)*lh).
The singular behaviour of the integrands indicates that the resulting

expressions for the displacements are non-convergent and that the above
solution should be critically reexamined.

5.3. Proposed modifications
The construction of the final solution to our problem was suggested by the

observation that simple subtraction of terms of the form

-le-' (5.3)

from the original integrands results in convergent integrals for the displace-
ments and stresses (CT .̂ and oz

yy). It should be noted here that expression
(5.3) reduces to (5.2) as A-»0. The inclusion of the multiplying factor e~k in
the A~1-term of (5.2) ensures the integrability of the final expressions for the
displacements and stresses.

It was further observed that the functions Ak~3 + Bk~1e~k of the
transform variable A represent Fourier transforms of displacements con-
tributing nothing to the transforms of the stresses ozz, ozx, azy, thus
automatically satisfying the zero-traction boundary conditions at z = h and
z = 0. This is also consistent with the fact that the kernels of the integral
expressions for the ozz, azx, ozy stresses do not involve singular terms as
A-»0.

In addition it was shown that the stress-displacement state vector
corresponding to the transformed displacements A\~3 + BX~1e~x are also
solutions of the transformed governing equations (3.1).

Motivated by the above observations, we propose here a solution
constructed by simply subtracting singular functions of the form (5.3) from
the integrands of the displacements. As mentioned above, the resulting
displacements are convergent and give rise to stresses azz, ozx, ozy, o^, oyy,
oxy, which are identical to the ones obtained directly from (5.1) and (3.2).

In the next section we shall present all displacement and stress com-
ponents resulting from the modified solution. We shall then formally prove
that the proposed fields satisfy all field equations and boundary conditions,
and reduce to the well-known solution for a point load in an infinite domain
(Kelvin state), as the point of application of the load is approached.

6. Stress and displacement fields
For the sake of simplicity only the stress and displacement fields related

to a unit load in the z-direction are presented; the remaining expressions
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A POINT F O R C E IN A L A Y E R 89

are provided in (11, 12). Thus
1 fA=°° tHx1 + v 2 h^w L f-M-hr

2 _ 2 /•*=

- „ !̂
z) = ̂ -voUx, y, z) + 8;i(1 ^ v)2)[2 {(14- v)£"' A x

X [mVJ^pt) - 12(1 - V)»(2Z -
2 + 2-v

L ( 6 - 5 )

(6.6)

24(1 - v)2

( .̂2 + 2U -A-,

- 6(1 - v)2 5--JLL ( 2 z - l) £ _ | dA) (6.8)

v

h

(6.9)
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90 F. G. BENITEZ AND A. J. ROSAKIS

Here the superscript (x, y, z) indicates the direction of the unit load, and
X = z/h, tp = H/h; the /(A) are functions of A, % and xp and are defined in
(11,12).

6.1. Basic features of the solution
In a former paper (12), we discussed the characteristic features of the

solution presented above; see expressions (6.1) to (6.9). In particular the
following properties were demonstrated.

(1) The expressions for the displacement field satisfy the displacement
equations of equilibrium.

(2) The proposed stress field satisfies the boundary conditions prescribed
on the plate surfaces.

(3) The integral of the tractions over the boundary dC of a cylinder of
arbitrary radius p, p > 0 is equal to minus the point load applied at £ = Hez.

(4) The stress and displacement fields have the following properties:

In particular, the displacements and stresses of the present solution
reduce to the equivalent ones predicted by Kelvin's solution as the point of
application of the load is approached. The proof of the above for the
specific case of a stress component is given in (12).

The complete proof for all displacement and stress components for
concentrated loads along any direction is entirely analogous.

6.2. Far-field analysis of stress and displacement components
The solution denned by expressions given in section 6 is formally

satisfactory. However, for some of the expressions, a further integration
would lend them an easier physical interpretation.

In particular, the solution in its present form throws no light on the
question of the behaviour at points which are a large distance from the
applied load in comparison with the plate thickness. By using the integrals
defined in the Appendix the expressions, from which singular terms have
been subtracted, (6.10), (6.11), (6.19) to (6.23), (6.25), (6.27) in (11, 12),
are shown to be composed of two parts of very different characters. The first
part is a function the value of which decreases as the distance from the
source increases, while the second part is a function of a very simple form.
Thus, the solution is separated into a local, transitory, or decaying part,
which fades away from the neighbourhood of the applied load; and a
permanent, or persistent part, which is important in the whole domain
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A POINT FORCE IN A LAYER 91

occupied by the layer. Now

old*, y>z)=-[^ °Z^X' y>

x /0(A I
•y 2 3 en

/ o ( A | ) dk+(1 _ v)£!_

l / z W A3

- v)0f + V - ^2 - V2) + f (1 - v)2] ^} / 0 (A I ) dk

- 12v(l - v)0f + V-X2-V2)- ¥(1 - v)2] - 6(1 - v)2 Q ,

(6.12)

£ 7 {^(A) i2(i )2(2 i} hHx f
+

rA=O >• A J V A

3 ( i - v 2 ) ^ , x :

2xhE

where/? = (x2 + >'2)i
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A POINT FORCE IN A LAYER 93

In all of the previous components, the integrands of the transitory parts
exist and are well behaved for every A e [0, °°). And, in particular, the limit
of these integrands is zero as A-»0 and A-»oo.

6.3. Numerical evaluation of the solution

Examples demonstrating some of the features of the three-dimensional
solution are presented in Figs 2, 3 and 4. A point load along the z-direction
was applied at a distance 0-25/i from the lower surface of the layer. The
variation of the a^-component of the stresses with respect to the normal-
ized in-plane distance r1 = (x2 + y2)$/h measured from the point of applica-
tion of the load is shown for the cases of z = 0-95/i, z = 0-75/i, z = 0-5h and
z = 0-3h. As expected, as r->0 (z-*0-25h, r ' -*0), the stresses reproduce
the singular behaviour of the Kelvin state.

Figures 3 and 4 show the variation of the same stress component along
the thickness of the plate for different values of the normalized in-plane
distance (x2 + y2)tyh measured from the applied load. At distances close to

x 1 0
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0 -7 -

0 - 6 -
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ilh'lP
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FIG. 3. Variation of the normalized stress o\JizIP versus the normalized
distance x - 2/h measured from the lower surface of the layer. Different

curves correspond to r' = 0-75, r' = 0-50, r' = 0-25, r' = 015
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1-0 - .2

P.S(x,y,z-H

15
1 1 1 1 1 1 1 1 1 1 1 1 1 1

r'=0-05

i i i i i i i i i I i i i i i i i i i 1

10 -10 -15 -20

FIG. 4. Variation of the normalized stress o*zzh
2/P versus the normalized

distance x = ZM measured from the lower surface of the layer. Different
curves correspond to r' = 015, r' = 010, r' = 005

the load (see Fig. 4, (x2 + y2)i/h = 0-05), the stress changes rapidly from
tensile to compressive as the plane of application of the load (z = 0-25/i) is
traversed. As the distance from the load is increased, the tensile portion of
the thickness variation diminishes and eventually disappears. It is also worth
noting that for distances greater than O-5/i the thickness variation becomes
symmetrically shaped despite the fact that the problem is non-symmetric in
the thickness direction, suggesting that the decay length for the three-
dimensional Saint-Venant problem is of the order of half the plate
thickness.
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APPENDIX
Two integrals of great importance in the above analysis are the following:

Differentiating (A.2) with respect to R, the following integral is also obtained:

R Rt R , x
l ( A 3 )

 at C
ornell U

niversity L
ibrary on June 22, 2015

http://qjm
am

.oxfordjournals.org/
D

ow
nloaded from

 



 at C
ornell U

niversity L
ibrary on June 22, 2015

http://qjm
am

.oxfordjournals.org/
D

ow
nloaded from

 


