On the Extent of Dominance of Asymptotic Elastodynamic Crack-Tip Fields: Part II—Numerical Investigation of Three-Dimensional and Transient Effects

In Part I of this paper, the question of the extent of dominance of the mode I asymptotic elastodynamic crack-tip field (the K_I-field) was studied experimentally. Here, the results of two and three-dimensional elastodynamic finite element simulations of the drop-weight experiments are reported. The load records as obtained from the impact hammer and supports of the drop-weight loading device were used as boundary tractions in the numerical simulations. For the laboratory specimen studied, the results of the simulations indicate that the asymptotic elastodynamic field is not an adequate description of the actual fields prevailing over any sizeable region around the crack tip. This confirms the experimental results of Part I which showed that three-dimensional and transient effects necessarily have to be taken into account for valid interpretation of experimental results.

1 Introduction

It is increasingly being recognized that the stress and displacement fields near the tip of a crack are essentially three-dimensional in nature. Exact analytical solutions for the three-dimensional crack problem, however, do not exist in general. Thus, finite elements have been used extensively to gain an understanding of the three-dimensional structure of the crack-tip fields. For example, Levy, Marcal, and Rice (1971), Parsons, Hall, and Rosakis (1986), and Nakamura and Parks (1987) have investigated three-dimensional crack problems under elastostatic conditions. In addition, Narasimhan and Rosakis (1988) and Nakamura and Parks (1988) have recently studied the three-dimensional elastoplastic state prevailing near the tip of a static crack.

The finite element method has also been used to study three-dimensional dynamic fracture problems. For the most part, however, special singular elements have been used to model the crack tip. The purpose of employing singular elements has been to bias the near-tip field to have a particular (asymptotically known) structure in order to extract the magnitude of crack-tip singularities (the stress intensity factor, J-integral, etc). For instance, Nakamura, Shih, and Freund (1986) have analyzed the three-point bend configuration under idealized dynamic loading conditions. Their primary objective was to identify conditions under which experimentally obtained quantities could be used to directly infer the initiation value of the J-integral under elastoplastic conditions.

Smith and Freund (1988) were the first to investigate in detail the nature of the near-tip three-dimensional elastic fields for a steady-state, dynamically propagating crack under Mode I conditions. They, however, imposed the plane-stress dynamic stress intensity factor field (the K_I^D-field) as the far-field boundary condition. As pointed out in Part I of this paper, one of the most important pieces of information that the experimenter would like to have is the extent to which the K_I^D-field models the near-tip stresses and displacements. Most of the experimental results reported in the literature rely on the assumption of K_I^D-dominance around the crack tip. The adequacy of such an assumption therefore needs to be studied.

In Part I, the issue of K_I^D-dominance was studied through a series of drop-weight experiments in conjunction with the method of bifocal caustics. The results of the experiments indicated that the assumption of K_I^D-dominance could lead to substantial errors in the measured results. In this paper, the finite element method is used to investigate this issue further. No attempt is made to bias the near-tip singularity; nor is the far-field boundary condition constrained to be given by the plane-stress asymptotic field.
A series of two and three-dimensional finite element simulations\(^1\) of the drop-weight experiments (reported in Part I) were done using the experimentally recorded impact and support-point load histories as boundary tractions for the simulations. The simulations were undertaken in an effort to qualitatively capture the essential features of the experimental results. Only the case of the dynamically loaded stationary crack was considered for the simulations. It was felt that attempting to simulate the case of a propagating crack would be premature at this point, especially since it entails a high degree of uncertainty in terms of the nodal-release procedure that would have to be used. The primary interest here is in trying to identify the role of specimen geometry, dynamic loading, and the three-dimensional structure of the crack-tip region (especially under transient conditions) insofar as these have a bearing on the \(K_I\)-dominance assumption on which the experimental methods rest.

Three issues are addressed. First, where relevant, direct comparisons of the numerical results with the corresponding asymptotic field are made to ascertain the adequacy of the \(K_I\)-field as a characterizer of the near-tip continuum fields. All field quantities presented are normalized in such a manner as to highlight salient points. Thus, full-field two-dimensional results are compared with the asymptotic field and three-dimensional results are normalized by the appropriate two-dimensional or asymptotic values. Secondly, virtual energy release rate integrals evaluated numerically are used to extract stress intensity factor values in order to compare with the experimentally measured values. Finally, the implications of the finite element results are studied with regard to the experimental method of caustics in reflection. In an attempt to qualitatively recover the results of the drop-weight experiments, an exact analog of the procedure used in the experiments is attempted in the following manner. As explained in Part I, the out-of-plane surface displacement fields obtained from the analyses are used to numerically generate (synthetic) caustic patterns for a range of initial curves. That is, the numerically obtained surface out-of-plane displacement field \(u_j (x_1, x_2, h/2)\) is subjected to the optical mapping

\[
X = x + 2z_0 \nabla u_j (x_1, x_2, h/2)
\]

(1)

for a set of values for parameter \(z_0\) (the object plane distance). Here, \(x\) are points on the specimen that are optically mapped onto points \(X\) on the object plane, and \(h\) is the specimen thickness. These caustics are then interpreted exactly as in the experiments; i.e., the caustic diameters are related to the stress intensity factor under the assumption that the underlying out-of-plane displacement field is \(K_I\)-dominant. Thus, the transverse diameters of the synthetic caustics are used to extract the apparent stress intensity factor values through the relation

\[
K_I^m = \frac{ED^{5/2}}{2z_0^3h} f(\hat{a}, \nu),
\]

(2)

where \(D\) is the transverse diameter of the caustic, \(\nu\) is Poisson’s ratio and \(E\) is the Young’s modulus of the material, \(h\) is the specimen thickness, \(\hat{a}\) is the crack velocity, and \(f\) is a known function of crack velocity and material properties (see Part I for details). Again, as in the experiments, if the displacement field is not actually \(K_I\)-dominant, this fact would be reflected as an apparent (erroneous) dependence of the stress intensity factor on the radial distance from the crack front.

It must be pointed out that in the ensuing discussion of two-dimensional results, all in-plane lengths are normalized by the (actual) specimen thickness, \(h\). For a two-dimensional problem, however, the plate thickness is not a relevant length scale.

This is done here purely for ease of reference with subsequent three-dimensional results.

2 Two-Dimensional Elastodynamic Simulations

The simulations of the dynamic experiments were first attempted under the simplifying assumption that the specimens could be considered to be essentially under plane-stress conditions. Before delving into the simulations of the experiments, one issue needs to be addressed. Since no special singular elements were used in the finite element analyses, it is essential that the discretization used must be such as to capture the expected singular crack-tip fields adequately. To this effect, preliminary two-dimensional elastostatic analyses of the three-point bend specimen were performed. Based on the results of these, the mesh discretization shown in Fig. 1 consisting of 396 isoparametric linear quadrilateral elements (425 nodes) was found to be adequate. This mesh has a focused region around the crack-tip of about one (actual) specimen thickness which is divided into 18 sectors and 10 concentric rings of elements. The crack-tip elements are four-noded quadrilaterals collapsed into triangles. The mesh discretization was found to adequately capture the square-root singular field near the crack tip for the elastostatic case and was thus deemed suitable for the dynamic problem as well.

For the two-dimensional elastodynamic simulations, the loads as obtained from the experimental tup records (Fig. 2) were applied as the boundary conditions. That is, the impact-tup load history was applied to the nodes corresponding to the impact tup, and the support-tup load history was applied to the associated nodes as shown in Fig. 1. From symmetry conditions, the uncracked ligament was constrained to move only along the \(x_1\)-direction. The rest of the boundary was left free

\[\text{Fig. 1 Mesh geometry}\]

\[\text{Fig. 2 Impact and support load records; specimen } (\alpha = 4)\]

\[\text{Transactions of the ASME}\]
of traction. An implicit Newmark predictor-corrector time integration scheme (see Hughes and Belytschko, 1983) was used for its virtue of unconditional stability which would allow for relatively large time steps and the attendant loss of high-frequency information was deemed acceptable since it is not the intent here to monitor discrete stress waves in the body. The time steps chosen for the numerical integration were thus based only on accuracy considerations.

The (virtual) energy release rate for a dynamically loaded stationary crack is given by (see Nakamura, Shih, and Freund, 1986)

\[J = \lim_{r \to 0} \int \left((U + T) n_1 - \sigma_2 n_1 \frac{\partial u_2}{\partial x_2} \right) d\Gamma, \]

(3)

where \(U \) is the strain energy density, \(T \) is the kinetic energy density, \(\sigma_2 \) is the stress tensor, \(u \) is the displacement vector, and \(n \) is the unit outward normal to the contour of integration \(\Gamma \). Here, \(\Gamma \to 0 \) symbolically indicates that the integration contour must be shrunk on to the crack tip. In the simulations, the time history of this integral was computed using the equivalent domain integral form described in Nakamura, Shih, and Freund (1986). The dynamic stress intensity factor was then computed through the relation between \(K_f^T \) and \(J \) in plane stress,

\[K_f^T = \sqrt{EJ}, \]

(4)

where \(E \) is the Young’s modulus of the material. Figures (3a), (3b) show the experimentally obtained dynamic stress intensity factor history in comparison with that from the numerical simulations for specimens (v 3a) and (a - 4). Here, \(K_f^T \) and \(K_f^T \) refer to the experimentally measured values corresponding to the two object plane distances \(z_0 \) and \(z_2 \) (see Part I for details) and \(K_f \) is that computed from the dynamic simulations (through the \(J \)-integral). It is seen that in both cases \(K_f^T \) has the same general trend as \(K_f \) and \(K_f^T \) except that the experimental values are sometimes substantially lower, while at other times equal to or higher than the simulated values. This discrepancy is attributable to two sources. First, there are uncertainties associated with the simulations in terms of how accurately the two records provide the boundary tractions actually experienced by the specimens. Secondly, and more importantly, there is the possibility that the experimental values might not have been obtained from a region of \(K_f^T \)-dominance. This is in fact foreshadowed by the discrepancy between the two experimental records themselves.

In the above, it has been implicitly assumed that the asymptotic \(K_f^T \)-field has validity for this (two-dimensional) geometry and dynamic loading condition. However, as pointed out in Part I, the existence of a stress intensity factor field around a dynamically loaded stationary crack in a finite geometry has not been universally established. It is thus necessary to check whether a square-root singular asymptotic field is appropriate here. To this end, a logarithmic plot of stress component \(\sigma_{22} \) along the \(\theta = 5 \text{ deg} \) line versus the logarithm of radial distance from the crack tip is shown in Fig. 4 for one representative time in the simulation. Comparison with the corresponding curves for the asymptotic field (with the values of the stress intensity factor obtained from the \(J \)-integral) indicates that a square-root singular field is indeed asymptotically descriptive of the near-tip continuum structure for this two-dimensional configuration at least for the times shown.

As a measure of the extent of dominance of the asymptotic \(K_f^T \)-field, the angular variation of the stresses and displacements for a range of radial distance is shown in Figs. 5(a), 5(b) for one particular time. Also shown for comparison are the corresponding asymptotic values. Note that the normalization used here is such that the asymptotic values are given by a single curve for any radial distance. This normalization ensures distinct features of the stress intensity factor field to be discerned in the near-tip full-field solution. The magnitudes, however, are seen to vary with increasing radial distance from the crack tip.

A quantity of fundamental interest for the method of causics in reflection is the out-of-plane displacement field, \(u_3 \). The plane-stress condition that \(\sigma_{33} = 0 \) provides the following relation for the out-of-plane displacement field:

\[u_3 = -\frac{h}{2E} (\sigma_{11} + \sigma_{22}), \]

(5)

where \(h \) is the actual specimen thickness. The angular variation of this is shown in Fig. 6 for two radial distances from the
crack tip. Again, \(u_3 \) is normalized by the corresponding asymptotic quantity. It can be seen that the full-field quantity is in reasonable qualitative agreement with the asymptotic expression for \(r/h \to 0 \) with increasing deviation in magnitude as \(r/h \) increases. This was seen to be the case for other times in the simulation as well. Note, again, that normalization of two-dimensional results with respect to the (actual) specimen thickness is done purely for comparison purposes with subsequent three-dimensional results.

Finally, synthetic caustics were obtained from the out-of-plane displacement field for various times in the simulation. Since linear finite elements were used and, in plane-stress problems, the out-of-plane displacement field is obtained from the in-plane stress field, a smoothing scheme given in Hinton and Campbell (1974) was used to obtain the derivatives of the surface-displacement field required in the caustic mapping of the surface. A representative set of these caustic patterns is shown in Fig. 7(a) for one particular time in the simulation and for a set of \(z_0 \)'s. The corresponding initial-curve radii computed on the basis of the caustic diameters (see Part I for details) range from \(r_0/h \) of 0.31 to 0.86. These caustics are seen to have the epicycloidal shape characteristic of those from the asymptotic solution. The ratio of the stress intensity factor computed from the diameters of these synthetic caustics (denoted \(K_{\text{cw}} \)) to that obtained from the J-integral (\(K_J \)) are plotted in Fig. 7(b) as a function of the initial curve radius of the numerical caustic. While the apparent measured stress intensity factor seems to increase as \(r_0/h \) increases, to within the accuracy warranted by the procedure used here, it appears that caustics should provide the stress intensity factor value (to within 20 percent) for initial curve radii in the range \(r_0/h \leq 0.8 \). Even though this error is substantial, it is clear that two-dimensional transient effects alone would not seem to entirely account for the much larger variation in the stress intensity factor observed in the experiments. Indeed, it is worth noting that the above
result would indicate that caustics should always overestimate K_f which is not necessarily the case in the experiments (see Figs. 3(a), 3(b)).

3 Three-Dimensional Elastodynamic Simulation

It appears that the substantial variation observed between the experimentally measured stress intensity factors from bidirectional caustics (see Part I) cannot be explained purely in terms of (two-dimensional) dynamic effects affecting the caustic patterns. Thus, additional reasons must be sought in terms of (a) nonlinear effects or (b) three-dimensional effects under transient conditions. Visual evidence of the plastic deformation in the fractured specimens indicated that the initial curves for the experimental caustics were well outside the plastic zone whose maximum extent was seen to be confined to $r_f/h < 0.15$ (Krishnaswamy, 1988). Based on the estimates of Rosakis and Freund (1981), the experimental results of Zehnder and Rosakis (1988), as well as elastoplastic simulations of the current experiments, plasticity effects were found to be minimal. Thus, attention will now be directed toward studying the effect of three-dimensionality near the crack tip by means of a full-field three-dimensional elastodynamic simulation of the drop-weight experiments.

The mesh geometry used had an in-plane layout identical to that used for the two-dimensional cases (Fig. 1). This enables direct comparison of three-dimensional results with the corresponding plane-stress simulations and thereby helps identify the effect of three-dimensionality. Five layers of 8-noded brick elements through half the thickness leading to a total of 1960 elements (2550 nodes) were used to model one-quarter of the three-dimensional body. The crack tip elements were collapsed to form triangular wedges. Recognizing that the largest through-thickness variations in field quantities occur near the free surface, the mesh was graded in the thickness direction such that the layer interfaces were at $x_i/h = 0.15, 0.275, 0.375, 0.45, and 0.5$. The experimentally obtained u-load histories interpreted as uniform line loads through the thickness were applied as boundary conditions to the appropriate nodes. The uncracked ligament surface and the specimen midplane were constrained suitably as dictated by symmetry considerations. The rest of the boundary was left traction-free. Once again, an implicit Newmark predictor-corrector scheme was used in order to be consistent with the algorithm used for the two-dimensional simulation.

Following Nakamura, Shih, and Freund (1986), an average dynamic energy release rate integral appropriate for the three-dimensional case can be defined as:

$$J_{sw} = \frac{1}{h} \lim_{S \to 0} \int_S \left((U + T) n_i - a_i p_i \frac{\partial \hat{u}_i}{\partial n_j} \right) dS,$$

where S is now a tubular surface through the specimen and $S \to 0$ symbolically indicates that this surface is shrunk onto the crack front. In order to compare with experimental results, an “average” stress intensity factor is extracted from J_{sw} through relation (4). The average energy release rate value obtained from the three-dimensional simulation is shown in Fig. 8 and is seen to be not much different from that computed in the plane-stress analysis. This suggests that the plane-stress approximation might be adequate if one is merely interested in integrated energy release rate type of quantities.

From the point of view of the method of caustics in reflection, the primary issue is the extent of deviation of the near-tip surface out-of-plane displacement field from the corresponding asymptotic plane-stress expression. This is shown in Fig. 9(a) for a set of radial lines along $\theta = 0$ deg, 60 deg, and 140 deg and for one typical time. The surface \hat{u}_z-displacements as obtained from the three-dimensional solution are normalized by the corresponding asymptotic values. The two-dimen-

Journal of Applied Mechanics

diameters to the stress intensity factor through equation (2), then the resulting value of \(K_{\text{rms}} / K_j \) (shown for two times) is seen to vary quite substantially with increasing initial curve radius as shown in Fig. 10(b). From the figure, it is seen that as \(r_0/h \to 0 \), the measured stress intensity factor value becomes substantially less than the value obtained from the domain integral. Further, for larger initial curve radii, it is possible for caustics to provide an overestimate of \(K_j \). More importantly, the almost monotonically increasing \(K_{\text{rms}} / K_j \) curve for the three-dimensional transient simulation case qualitatively captures essentially all the features observed experimentally. Thus, the apparent dynamic stress intensity factor, as measured by the method of caustics, would seem to increase with increasing initial-curve radii. Also, in view of the lack of a sizeable domain of dominance of the \(K_j \)-field, it would appear that the agreement between the measured dynamic stress intensity factor history and that computed through the \(J \)-integral cannot be expected to be any better than obtained in Figs. 3(a), 3(b).

As a parenthetical note, it is interesting that the variation in \(\frac{K_{\text{rms}}}{K_j} \) and \(\frac{K_j}{K_j} \)—the two values for the dynamic stress intensity factor as measured from pairs of bifocal caustics—turns out to be in quite good quantitative agreement with the results of Fig. 10(b). That is, the ratio of \(K_{\text{rms}} / K_j \) as obtained from experiments seem to be in close agreement with that obtained from Fig. 10(b) for the corresponding initial curve radii. This can be seen in Fig. 11 where the numerically generated results of Fig. 10(b) are used to “scale” the results of one particular experiment. To do this, assume that the results of Fig. 10(b) \((K_{\text{rms}} / K_j \text{ versus } r_0/h) \) hold for the whole duration of the loading. The experimental data (corresponding to the two \(z_0 \)) shown in Fig. 11(a) can then be scaled, for each time, to the corre-
Fig. 12 Representative near-tip variation of the degree of plane strain

![Graph showing degree of plane strain vs. time](image)

Fig. 13 Representative through thickness variation of normalized stress components

![Graph showing stress components vs. normalized thickness](image)

4 Discussion

Based on two and three-dimensional elastodynamic simulations, the reasons for the observed experimental variation are accounted for by the three-dimensional elastodynamic simulation. Note that it is purely to highlight this point that the above “scaling” procedure was adopted. It is not the intention here to offer Fig. 10(b) as some kind of an empirical “correction curve” for experimental data.

Finally, it is instructive to look into some additional features of the near-tip field quantities. Figure 12 shows the near-tip variation of the degree of plane strain for one typical time in the simulation. In regions where plane stress is a good approximation to the actual three-dimensional state of stress, the degree of plane strain must be close to zero. It is seen that, by this measure, plane-stress conditions are obtained at radial distances greater than about one-half plate thickness from the crack front. Also note that the radial extent of the region of three-dimensionality is not uniform around the crack front but varies substantially with angle.

The thickness variations of stress components (σ_{11} and σ_{22} normalized by the corresponding full-field two-dimensional values) are shown for one representative time in Figs. 13(a), 13(b) for a range of radial distances from the crack tip along the $\theta = 45$ deg line. It can be seen that the deviations in stresses from the two-dimensional fields are largest toward the crack tip and the free surface. Also, these plots underscore the point that the assumption of plane stress is indeed a good one for regions of radial extent greater than about one-half plate thickness away from the crack front. Note, however, that this does not imply that the asymptotic K_f^*-field is dominant in the plane-stress region outside the near-tip zone of three-dimensionality.
lations of the drop-weight tests, the following conclusions can be drawn:

(i) The dynamic asymptotic field, while sufficiently accurate for \(r/h > 0 \), becomes increasingly inadequate for larger radial distances even in a purely two-dimensional setting.

(ii) The three-dimensional nature of the dynamic crack-tip field, which is seen to be confined to within at most one plate thickness radial extent around the crack-tip, exhibits largest deviation from the full-field plane-stress results for \(r/h \approx 0 \).

(iii) The above two results together imply that the three-dimensional structure of the near-tip surface, coupled with the transient nature of the local fields, appear to preclude any sizeable region of \(K_I^D \)-dominance around the crack tip.

The experiments reported in Part I had also indicated the lack of an underlying \(K_I^D \)-dominant field. This was observed experimentally for both the dynamically loaded stationary crack as well as for rapidly propagating cracks. While it is recognized that the results of this work are specific to the configuration studied, it is not inconceivable, especially in view of lack of countervailing evidence, that a similar result could hold in other settings. It might thus be instructive to speculate on the validity of the presumed \(K_I^D \)-dominance in some of the experiments reported in the literature.

Some Implications of Lack of \(K_I^D \)-Dominance. As far as the dominance of a \(K_I \)-field is concerned, the ratio of the smallest pertinent in-plane length to the specimen thickness can be thought of as a relevant geometry parameter. As pointed out in Part I, the possible extent of a \(K_I \)-dominant annulus around the crack-tip is bounded from within by the maximum extent of (a) the process zone, (b) the nonlinear region, and (c) the three-dimensional region. For nominally brittle materials such as those considered in this work, it appears that three-dimensionality is the most critical of the three. Also, the outer bound for a \(K_I \)-dominant annulus around the crack-tip is expected to depend on a relevant in-plane length scale. Thus, under static conditions at least, it is expected that the ratio \(a/h \) (where "\(a \)" is the smallest relevant in-plane length and "\(h \)" is the specimen thickness) must be sufficiently large for a \(K_I \)-field to survive the three-dimensional region and establish its dominance over some finite domain. In dynamic problems, the issue is much more involved with additional requirements dictated by the nature of the loading and the time required for stress-wave information to reach regions outside the three-dimensional zone (see, for example, Ravi-Chandar and Knauss, 1987). These, however, would seem to only further restrict the possibility of obtaining a \(K_I^D \)-dominant region in a real experiment. Thus, if \(a/h \) fails to be sufficiently large, it is not expected that a \(K_I \)-dominant field would prevail over any finite domain around the crack tip. In particular, note that in the experiments reported in this work, \(a/h \) is about 9 (based on the uncracked ligament as the relevant in-plane length) and, for this value, a \(K_I^D \)-dominant field was not observed. It might thus be expected that the existence of a \(K_I^D \)-dominant region is not assured for specimens for which \(a/h \) is of the same order as this work. It is not the authors' intention here to make a detailed review of the experimental literature with a view to ascertaining whether \(K_I^D \)-dominance prevailed in these experiments or not. Rather, the parameter \(a/h \) is suggested here as one measure by which the interested reader might gauge the relevance of the results of this work to other experiments. In the following, some issues on which the results of this work might have a bearing are briefly discussed.

On \(K_{ID} \)-\(a \) Relations: Attempts by Takahashi and Arakawa (1987)—using the method of caustics again—to show acceleration dependence of the dynamic fracture toughness can also be deemed inconclusive for precisely the same reasons as above.

On Photo-elasticity versus Caustics: Nigam and Shukla (1988) have recently tried to compare the methods of photo-elasticity and transmission caustics by doing tests on identical specimens under identical loading. They show that while both methods work well for static problems, the method of photo-elasticity gives values for the dynamic stress intensity factor which are about 30–50 percent higher than those obtained through the method of caustics. As shown in this paper, this discrepancy could very well be due to violation of \(K_I^D \)-dominance assumed in the interpretation of experimental data. Note, in particular, that caustics and photo-elasticity data typically come from different regions around the crack tip.

Finally, the larger question of whether a stress intensity factor based fracture criterion is applicable under conditions of lack of \(K_I^D \)-dominance remains to be resolved. By the very nature of its formulation (see Part I), it would seem that a \(K_I^D \)-based fracture criterion would be applicable to only that class of problems where there is a \(K_I^D \)-dominant region confining the near-tip nonlinear and fracture process zones. Thus, it could be argued that investigations designed to resolve questions of the dependence of the dynamic fracture toughness on crack velocity, acceleration, or specimen geometry, etc., would be meaningful only if (i) the experimental configuration utilized is shown to lead to a region of \(K_I^D \)-dominance and (ii) the observed variations are significant in comparison to the uncertainty associated with the assumptions of the experimental techniques used.

5 Conclusion

In this paper, as well as in Part I, an attempt has been made to investigate the consequences of interpreting experimental results using the method of reflected caustics under the assumption of \(K_I^D \)-dominance. It was shown that this assumption...
could lead to substantial errors in the measured results. It is our view that many of the apparent discrepancies in the experimental literature might arise from the lack of an underlying K_f-dominant or higher-order two-dimensional region assumed in the interpretation of the experimental data. The assumption that the near-tip region is K_f-dominant (or even two-dimensional, for that matter) is only an approximation and, as such, entails a corresponding uncertainty in the measured values for the dynamic stress intensity factor. We feel that it is essential to undertake studies in the spirit of the one reported here to investigate the assumptions of other experimental techniques (photo-elasticity, transmission caustics, etc.) and evaluate the costs incurred in terms of loss of accuracy.

Acknowledgments

The authors would like to thank Prof. M. Ortiz for providing a version of the finite element program, FEAP. Support of the Office of Naval Research through contract N00014-85-K-0599 is gratefully acknowledged. The computations were performed using the facilities of the San Diego Supercomputer Center and were made possible through an NSF-PYI grant MSM-84-51204 to the second author.

References

