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Abstract. A first order diffraction analysis of an optical interferometer, Coherent Gradient Sensor (CGS), for 
measuring surface gradients is presented. Its applicability in the field of fracture mechanics is demonstrated by 
quantitatively measuring the gradients of out-of-plane displacements around a crack tip in a three point bent 
fracture specimen under static loading. This method has potential for the study of deformation fields near a 
quasi-statically or dynamically growing crack. 

1. Introduction 

Presently, several optical methods are being used for measuring elastic or plastic crack tip 
deformations under quasi-static or dynamic loading conditions. Among the commonly used 
techniques, photoelasticity [l] measures principal stress differences while moire methods and 
interferometry [2-41 map in-plane or out-of-plane displacements. In the method of caustics, 
non-uniform displacement gradients due to crack tip deformations result in the formation 
of a shadow spot [5, 61. Subsequent interpretation of these optical measurements through an 
assumed asymptotic field description enables one to evaluate the so-called stress intensity 
factor (SIF) K, or the J-integral which are widely used in characterizing fracture behaviour 
of materials. 

In most of the above methods [l-4], one often encounters the difficult question of whether 
the chosen experimental technique provides adequate control over the sensitivity of measure- 
ment. This becomes relevant because of the wide range of magnitudes of deformation that 
may occur near a crack tip. Typically, interferometric methods are preferred for the measure- 
ment of elastic deformations while for larger deformations the resulting fringe density often 
overwhelms the recording capabilities. As a result, geometric moire methods are used when 
large deformations exist. However, in fracture studies one often needs a method which can 
satisfactorily perform in both regimes. 

In this paper, we propose an optical interferometer - coherent gradient sensor (CGS) to 
measure in-plane gradients of out-of-plane surface displacements around a crack tip. The 
method produces high contrast fringes and provides some degree of control on the sensitivity 
of measurement during quasi-static experiments. In addition, it involves a simple optical 
set-up and, when compared to other interferometric techniques, it is relatively insensitive to 
vibrations which makes it a potential candidate for dynamic crack growth applications. 
Finally, the insensitivity of this method to rigid body motions is highly attractive for solid 
mechanics applications. 
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CGS employs the basic principles of the so-called “moire deflectometry” used widely in 
a variety of problems by Kafri and his associates [7, 81. However, CGS takes advantage of 
coherent optics by using wave front division (by means of high density Ronchi rulings) and 
their subsequent interference. By incorporating an online spatial filtering procedure, one 
could not only realize high contrast fringes in real time, but also use high density diffraction 
gratings for the purpose. 

In the following, we present a diffraction analysis of the method and experimental 
evidence to demonstrate its applicability for elastic and elasto-plastic crack tip deformation 
studies. 

2. Experimental method 

2.1. Experimental set-up 

In Fig. 1 the schematic of the experimental set-up is shown. It consists of a specularly 
reflective fracture specimen illuminated by a collimated bundle of coherent laser light. 
Normal incidence is achieved using a beam splitter. The reflected object wave is incident on 
a pair of high density Ronchi rulings, G, and G,, separated by a distance A. The principal 
direction of the rulings is coincident with either the x,- or x,-coordinate axes to obtain 
(auJf%) or (&J%>, respectively, where z.+(x, , x2) denotes the out-of-plane surface dis- 
placements. As shown in the schematic, the origin of the coordinate system is located at the 
crack tip of the specimen. The field distribution on the G, plane is spatially filtered by the 

Fig. I. Schematic of the experimental set-up for CGS. 
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filtering lens L, and its frequency content is displayed on its back focal plane. By locating 
a filtering aperture around either the f 1 diffraction orders, the information regarding the 
displacement gradients is obtained on the image plane of the lens L,. In the following 
sections, a first order diffraction analysis is performed to demonstrate that the information 
displayed on the image plane indeed corresponds to gradients of the out-of-plane displace- 
ment u3. 

2.2. Principle 

Figure 2 explains the working principle of the CGS interferometer. For the sake of sim- 
plicity, and without losing generality, the line gratings are assumed to have a sinusoidal 
transmittance. For the case of a plane wave reflected from the flat surface of an undeformed 
specimen and propagating along the optical axis, the incident wave is diffracted into three 
plane wave fronts E,, , E, and E-i by the first grating G, . The magnitude of the angle between 
the propagation direction of E,, and E,, is given by the grating equation 8 = sin-’ (l/p), 
where A is the wave length and p is the grating pitch. Upon incidence on the second grating 
G,, the wave fronts are further diffracted into EO,O, E,,, , E,,-, , E,,, , E,,, etc. These wave fronts 
which are propagating in distinctly different directions, are then brought to focus at spatially 
separated diffraction spots on the back focal plane of the filtering lens. The spacing between 
these diffraction spots is directly proportional to sin 8 or inversely proportional to the grating 
pitch p. 

Now, consider a plane wave normally incident on a deformed specimen surface. The 
reflected light bundle incident on G, now carries surface displacement gradient information, 
and is constituted of light rays travelling in arbitrary directions. If a large portion of such 
a bundle of light has its light rays nearly parallel to the optical axis, each of the diffraction 
spots will be locally surrounded by a dispersed light field due to the deflected rays. The extent 
of this dispersion depends on the angle of deflection of the reflected rays. By using a two 
dimensional aperture at the filtering plane, information existing around one of the spots can 
be further imaged. This leads to an important but subtle point that should be noted. Since 
each of the diffraction spots is surrounded by dispersed light containing surface deflection 

Filtering Lens 

Fig. 2. Working principle for CGS. 

Filter Plane 



196 H.V. Tippur et al. 

information, overlapping of the information could occur on the filtering plane when the 
deflection of the ray is sufficiently large (i.e., >(I,/2p)). However, as will be shown in the 
following sections, this limitation can easily be overcome by the use of higher density gratings. 

2.3. Analysis 

Consider a specimen whose reflective surface occupies the (x, , x2) plane in the undeformed 
state. Upon deformation the reflector surface can be expressed as, 

F(x, 3 x2 > x3) = x3 + f-(4, x2) = 0. (1) 

Consider now, a plane wave which is incident on the specimen along the - x3 direction. The 
unit surface normal N at a generic point 0(x,, x2) is given by, 

N = E= heI + J2e2 + e3 
IVFI Jl +ff +i; ’ 

(2) 

where ei denote the unit vectors of the Cartesian coordinate system (see Fig. 3) andI, implies 
differentiation with respect to x,. Let d be the unit vector along the reflected ray whose 
direction cosines are a,, , & and yO. From the law of reflection, the coplanar unit vectors d, 
N and e, are related by d * N = e3 * N. This leads to 

d = (2e,*N)N - e3. (3) 

F (XI. x2. ~3) 
My+f(xl.x2)-oy 

Fig. 3. Diffraction of a generic ray in the CGS. 
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By substituting (2) into (3), 

d = (a,% + Poe2 + ~0%) = 
2(.f& + he2 + e3) _ e 

(1 + fT + xi) 3. 

Thus, the direction cosines of d can be related to the gradients of the functionf by 

‘x0 = 2”fl 2x2 (1 - .f: -L::) 
(1 + xf: + f:,‘)’ po = (1 + if: + j-Z)’ “?O = (1 +I: +fi)’ 

(4) 

(5) 

The ray along d upon incidence on the grating G, is split into rays propagating along do, 
d+, whose amplitudes E,(x’), E, (x’) and E-, (x’) can be represented by, 

E,(x’) = a, exp [ikd, * x’], E, (x’) = a, exp [ikd, * x’], E-,(x’) = a, exp [ikd-, * x’], 

(6) 

where a, and a, are constants and the wave number k = 27-c/1. Due to diffraction by the 
sinusoidal grating G, , the propagation directions of the resulting wave fronts are related by, 

d fl = Q+,do, - (7) 

where fi2, 1 _ are rotation tensors whose matrices of components are given by, 

and 0 = sin-’ (A/p). From (7) and (4) we find 

d *1 = [a,e, + (PO cos 0 f y. sin 8)e, + (y. cos 0 T PO sin @,I. (9) 

Now, with reference to Fig. 3, on plane G, we have 

E,(U’B) = a, exp [ikd, * O’B]. (10) 

In addition, since ]O’Bld, . e, = IO’B]y, = A, one finds that ]O’B] = (A/ye). Hence, 

E,(o’B) = a, exp 

In like manner, 

JO’Ald, - e3 = IO’AI(y, cos 0 - PO sin 0) = A, 

10’B’Idp, - e3 = IO’B’ I(yo cos 0 + Do sin f3) = A, 

(11) 

(12) 

(13) 
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and thus. 

E,(U’A) = a, exp [ikd, * O’A] = a, exp ik 
A 

(y. cos 19 - PO sin 19) 1 ’ 

E-, (0’B’) = a, exp [ikd-, - OlB’] = a, exp ik 
A 

(y. cos Q + lo, sin 0) 1 . 

(14) 

(15) 

2.4. SpatialJiltering 

The wave fronts E,, , e, 1 will undergo further diffraction upon incidence on G, into secondary 
wave fronts Eco,op EC,,,,, EC, -I)> Ec,,o,> EC,,,, etc. Of these secondary diffractions, EC,,,, and EC,,,, 
have their propagation direction along d,, Eco,,, and EcP,,,, along d-, and EC,,,,, EC-,,,, and 
EC,,+, along d,, Fig. 3. If information is spatially filtered by blocking all but k 1 diffraction 
order, only the wave fronts E,, + 1) and EC, ,,oj contribute to the formation of the image. Noting 
that the two wave fronts do not acquire any additional relative phase differences after G,, 
the amplitude distribution on the image plane is, 

4, = Go + E+l)lxj=A = a, exp - [ik($)] + alexp[ikp,cosR g/?,sin0)l (16) 

Hence, the intensity distribution on the image plane is, 

4, = Ei,,Eiz = ai + a: + 2a,a, cos 
yo(cos 19 - 1) f PO sin 8 

yo(yo cos 8 f PO sin 0) II ’ (17) 

where Eiz is the complex conjugate of E,, . Under small f3 approximation, the above equation 
simplifies to 

Zi, = at + a: + 2aoa, COS (18) 

Thus, Z,, denotes an intensity variation on the image plane whose maxima occur when 

~ = 21271, 2 n = 0, fl, f2,. . . 
YO 

(19) 

where n denotes fringe orders. 
From (5) the direction cosines a,, PO and y. are related to the gradients of the function5 

Then, the above equation can be written as, 

r ( 1 + IVfl’ kAe 2”fi (1 - pfl’)’ )I = 2m. (20) 
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When ]Vf]’ < 1, (20) becomes, 

x2 = (g), n = 0, *1,*2,... (21) 

where the fact that 0 z (A/p) and k = 27~12 are made use of. Similarly, when the gratings 
are oriented with their principal direction coinciding with the x,-axis, 

f1 25 (E)? m = O,+l,f2,... (22) 

Thus, (21) and (22) are the governing equations for the method of CGS. It should be noted 
that these equations are similar in form to those of moire deflectometry [8] and reflection 
moire methods [9] based on geometric optics. It is clear from the above two equations that 
the sensitivity of the method could be increased by either increasing the grating separation 
distance A or decreasing the grating pitch p. 

3. Experimental results 

Two experiments are performed to demonstrate the applicability of CGS in solid mechanics 
in general and fracture mechanics in particular. First, the gradients of a known function J 
were used to test the reliability of the measurements. For this purpose, a spherical wave front 
was generated using a convex lens of focal length fi = 546 mm. Line gratings of density 
40 lines per mm were oriented with their principal direction coinciding with the x,-axis and 
were separated by a distance of A = 22 mm to produce fringes that are shown in Fig. 4. The 
fringe spacing (x2/n) corresponding to the gradients in the x,-direction namely, L2 measured 
from the fringe pattern is 0.66mm/fringe. The spherical wave front emerging from the 
convex lens can be described by, 

j-(x,, x2) = q$ 
1 

and hence (in transmission), 

(23) 

(24) 

which corresponds to straight line fringes as shown in the figure. For the experimental 
parameters used in this demonstration, the fringe density expected from the above equations 
is 0.63mm/fringe which is in good agreement with the experimental measurements. 

Secondly, CGS was used to obtain gradients of the out-of-plane displacement z.+(x, , x2) 
(= -f(x, , x2)) around a deformed crack tip in a three point bend fracture specimen made 
of AISI 4340 steel. The dimensions of the specimen and the experimental set-up are shown 
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Fig. 4. Contours of constant x2 for a spherical wave front. 

in Figs. 5 and 6. The specimen has an electro-discharge machined notch which is 25 pm wide 
and 30 mm deep through a 10 mm thick plate. The specimen was heat treated to have a yield 
stress of 1350MPa. One of the surfaces of the specimen was lapped and polished to obtain 
a flat reflective test surface. The specimen was statically loaded in a hydraulic loading 
frame in displacement control mode. The load and the load point displacements were 
measured during the test. The optical set-up has two Ronchi rulings of 40 lines per mm 
density and are separated by a distance (A) of 21 mm giving a sensitivity of measurement 
6.05 x lop4 rad/fringe. In Fig. 7 fringe patterns representing contours of constant (8u,/dx,) 
and (Z~y/dx,) corresponding to three load levels P/P0 = 0.38, 0.61, 0.71 are shown where 
P, is the plane stress limit load for the specimen. For the lowest load level of the three 

-30.5-j 

Thickness, h=I.O 
Fig. 5. Specimen geometry of the 3-point bend fracture specimen. 
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Fig. 6. Experimental arrangement for fracture experiment using CGS. 

patterns shown (Fig. 7a), the near tip out-of-plane displacement field was assumed to be 
given by the linear elastic, asymptotic, plane stress expression, 

cyl + o(l), as r -+ 0, (25) 

where r = Jm, 4 = tan’ (x2 ix,), h is the specimen thickness, E is Young’s modulus, 
v is Poisson’s ratio, cy, is the constant term in the asymptotic expansion for the stresses, and 
K, is the mode I stress intensity factor to be determined by CGS. 

By using (21) and (22), the stress intensity factor can now be obtained from the fringe 
pattern, Fig. 7a, through: 

W&s = m=O,fl,+2,... (26) 

In the above expression, m is the fringe order and (K,),,, denotes the experimentally 
obtained value for the stress intensity factor. Note that the constant term Roy, does not appear 



t

10 mm 

(4 

10 Inn, 

(b) 

Fig. 7. (a) Contours of (h,/i?x,) and (&,/ax,) for (P/P,) = 0.38. (b) Contours of (&,/ax,) and (&+/dx,) for 
(P/P,) = 0.61. 

in (26) because the measurements are sensitive to surface gradients only. (K,),,, can now be 
computed from different fringes corresponding to different (r, 4) pairs. If the out-of-plane 
displacement field of the specimen surface is indeed given by (23, the experimentally 
obtained (K,),,, should be independent of the location of measurement (choice of r, C$ pairs 
in (26)). In such a case, (K,),,, should agree with the stress intensity factor (K,),, obtained 
from boundary value measurements by means of a two dimensional analysis [lo]. 
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10 mm 

(c) 

Fig. 7. (c) Contours of (&,/ax,) and (&,/ax,) for (P/P,) = 0.71. 

However, near the crack tip three dimensional effects are expected to violate the plane 
stress assumption which leads to (25). Indeed, the experimental results reported by Rosakis 
and Ravi-Chandar [12] and supported by the analytical investigations of Yang and Freund 
[ 1 l] have shown that (25) is a good description of the surface out-of-plane displacements only 
for radial distances greater than 0.5/z. This behaviour is also evident from the current 
experimental results displayed in Fig. 8. Here, (K,),, is obtained through the boundary load 
and the results compiled in [lo]. (K,),,, is obtained from fringes at different radial distances 
along the 4 = 0 line by using (26). It is clear from the figure that the measured value of 
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Fig. 8. Experimental results from (h,/ck,) fringes along (r, 4 = 0) line for (P/P,) = 0.38. 
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WI km is in good agreement with (K,),, for (r/h) > 0.5. However, for (r/h) < 0.5, a marked 
underestimation of the inferred stress intensity factor is observed. This is consistent with the 
results shown in Figs. 5 and 6 of [12] which are obtained by using the optical method of 
caustics. This is to be expected since both caustics and CGS rely on surface out-of-plane 
displacement gradients. 

The fringe patterns in Figs. 7b,c correspond to substantial near tip plastic deformations 
and as such the use of (25) and (26) is inappropriate. Direct comparison of the experimentally 
obtained displacement fields with a three dimensional elastic-plastic finite element analysis 
of the specimen is underway. 

4. Conclusions 

This paper provides a detailed diffraction analysis of the proposed interferometer, Coherent 
Gradient Sensor. The analysis indicates that the resulting interference fringes represent 
contours of constant surface gradients. Although the method bears similarities in its operat- 
ing principle with moire deflectometry [S], it has additional advantages because it uses 
coherent optics. Unlike moire deflectometry, which is limited by diffraction effects, this 
method utilizes such effects by making use of high density gratings and spatial filtering 
procedure. Also, spatial filtering enhances the contrast and sharpness of the fringes. 

The feasibility of CGS as a means of quantifying crack tip deformation fields has been 
demonstrated in the elastic and plastic regimes. Simplicity of the optical set-up, sharp and 
high contrast fringes and limited loss of light intensity make CGS a suitable candidate for 
dynamic crack initiation and propagation studies. Its relative insensitivity to laboratory 
vibrations comes as an additional advantage. 
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