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Abstract-The optical method of caustics is re-examined by considering the presence of dynamic 
non-uniform crack-tip motion histories. Based on the higher order transient expansion obtained by 
Freund and Rosakis (1990, Eleventh National Congress of Applied Mechanics; 1992, J. Mech. 
Phys. Solids 40(3), 699-719) and Rosakis et al. (1991,Inr. J. Fract. SO, R39R45), in which dynamic 
transient effects were included in the near-tip deformation field, the exact mapping equations of 
caustics are derived for non-uniformly propagating cracks. The resulting equations indicate that 
the classical analysis ofcaustics based on the assumption of Kf-dominance, is inadequate to interpret 
the experimental caustic patterns when dynamic transient effects become significant. In this paper, 
an explicit relation between the instantaneous value of the dynamic stress intensity factor K;‘(t) and 
the geometrical characteristics of the caustic is established. This relation shows that for the case of 
non-uniformly propagating cracks, the relation between the dynamic stress intensity factor and the 
geometrical characteristics of the caustic pattern depends on the crack-tip acceleration and on 
k;‘(t). It also reduces to the classical relation between K!(r) and the caustic diameter for the case 
of K;1-dominance (when the crack-tip fields are well described by the r-II2 singularity in stresses). 
The Broberg problem is used as an example problem to check the feasibility of analysing caustics 
in the presence of higher order transient terms. It is shown the value of the dynamic stress intensity 
factor obtained by the proposed method agrees remarkably well with the exact analytical value 
while large errors are introduced when the classical analysis (#-dominant) of the method of caustics 
is used. 

I. INTRODUCTION 

The optical method of caustics, a technique based on geometrical optics, has several 
advantages over the other light wave interference methods which are mainly related to its 
simplicity. It requires a simple optical set-up which does not involve the use of diffraction 
optics. It can be used easily either in transmission or in reflection arrangements. Data 
analysis is simple and does not require the use of complicated image processing techniques. 
The simplicity of the technique makes it an ideal candidate for high speed photography 
applications. In particular, the fact that the physical principle of caustics does not hinge on 
the availability of a coherent, monochromatic light source, has allowed for the use of high- 
speed camera systems which utilize white light illumination such as the Cranz-Schardin 
type cameras. In addition, the lack of complicated optical components, such as diffraction 
gratings, beam splitters, etc., in a caustic set-up ensures minimal light intensity losses which 
are crucial for successful high-speed photography, especially when the exposure time is in 
the order of nanoseconds. 

The method of caustics has been initially introduced by Schardin (1959) and Manogg 
(1964). Manogg used caustics in a transmission arrangement and gave the first quantitative 
analysis. He showed that the geometrical characteristics of the caustic dep%nd on the nature 
and intensity of the crack-tip singularity and was able to measure the intensity of the near- 
tip stress field. After Manogg’s work, the method of caustics was extensively used by 
Theocaris, who was also the first one to use this method in a reflection arrangement 
(Theocaris, 1970, 1971). Later, Theocaris and Gdoutos (1974) applied the method of 
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caustics in reflection to experimentally examine the deformation fields near the tips of 
stationary cracks in metal plates, and this is the first application of the method to the 
investigation of fracture in metals. Since the beginning of the 1970s the optical method of 
caustics has been developed into a successful experimental stress analysis method and found 
wide applications, especially for the analysis of dynamic fracture mechanics problems. 

There are two sets of simplifying assumptions that are customarily made in the various 
applications of the method of caustics. One regards the analysis of the optical process 
(transmission or reflection) and the other regards the nature of the mechanical fields under 
study. In each of them, assumptions and simplifications are made in order to interpret the 
caustic pattern quantitatively. The limitations introduced by the simplifications in the 
optical analysis of the method of caustics as well as an exact geometrical optics interpretation 
of the technique were thoroughly discussed by Rosakis and Zehnder (1985) and Rosakis 
(1992). However the corresponding issue regarding the assumptions made about the 
mechanical fields under study is more complicated and troublesome. 

In linearly elastic dynamic fracture mechanics, the method of caustics was first used 
in experiments involving very rapid crack propagation and stress wave loading by Kalthoff 
et al. (1976), Katsamanis et al. (1977), Theocaris (1978) and Goldsmith and Katsamanis 
(1979). In each case, it was assumed that the elastic stress field in the vicinity of a rapidly 
propagating crack tip has precisely the same spatial variation as the elastic stress field near 
the tip of a stationary crack. That is, the influence of inertial effects on the spatial distribution 
of the crack-tip field was not taken into account. Kalthoff et al. (1978) introduced an 
approximate correction factor to account for the error introduced when the static local field 
is used in the interpretation of caustic patterns. Rosakis (1980) presented the exact equations 
of the caustic envelope for elastic specimens containing rapidly growing cracks. He also 
presented the caustic equations for the case of mixed mode plane stress crack propagation. 
The above analyses all assume that the deformation field near the propagating crack tip is 
Kf-dominant. This means that the stress field at a finite region near the crack tip can be 
approximated accurately by the elastodynamic asymptotic singular solution (to within some 
acceptable error). Based on this assumption, many experimental investigations of the 
dynamic crack initiation, propagation and arrest have been carried out since then. 

Recent experimental investigations by Krishnaswamy and Rosakis (1991) and ana- 
lytical results by Freund and Rosakis (1990, 1992) and Rosakis et al. (1991) have found 
that the analysis of caustics based on K;1-dominance may nJ,t always adequately characterize 
the behavior of the deformation field in the vicinity of a transiently propagating dynamic 
crack tip. Indeed the assumption of Kf-dominance is often violated during dynamic crack 
growth. By relaxing the assumption of #-dominance, Freund and Rosakis (1992) have 
suggested that under fairly severe transient conditions, a representation of the crack-tip 
field in the form of a higher order expansion (involving time derivatives of crack-tip velocity 
and stress intensity factor) should be used to interpret the experimental observations. 

In this paper, we re-examine the optical method of caustics by considering non-uniform 
crack growth histories. The formation of the caustic image is briefly reviewed. In the 
following sections, the exact mapping equations of caustics and the initial curve equation 
are derived for a non-uniformly propagating dynamic crack. This derivation is based on 
the theoretical results of Freund and Rosakis (1990, 1992) and Rosakis et al. (1991), which 
allow both the crack-tip speed and the dynamic stress intensity factor to be arbitrary 
differentiable functions of time. Then the explicit relation between the dynamic stress 
intensity factor, K:(t), and two geometrical dimensions of the caustic pattern, is established. 
It is shown that the classical analysis of the caustics is a special case of this result under the 
condition of strict Kf-dominance. Finally, in order to verify the accuracy of the analysis 
developed in this paper, the Broberg problem is considered as an example problem of 
transient crack growth. The exact caustic patterns are generated by using the Broberg 
problem. These patterns are subsequently analysed by using both the classical analysis and 
the improved method proposed here. The results show that the value of the dynamic stress 
intensity factor obtained by the proposed method agrees remarkably well with the exact 
analytical value while large errors are introduced when the classical analysis (Kf- 
dominance) of the method of caustics is used. 
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2. METHOD OF CAUSTICS 
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2.1. Mapping equations 
Consider a plate specimen of uniform thickness, h, in the undeformed state. Let its 

mid-plane occupy the xi, x2-plane of an orthonormal Cartesian coordinate system. As the 
specimen is subjected to applied loads, non-uniform gradients in the optical path of light 
transmitted through it, or reflected from its surface, are generated. For a transparent 
specimen, the gradients in the optical path are due to non-uniform changes in the thickness 
of the plate and also due to stress induced gradients in the refractive index of the material 
in the specimen interior. For an opaque specimen, the gradients in the optical path are due 
to non-uniform surface elevations of the plate. 

Consider further a collimated beam of light travelling in the x,-direction, normally 
incident on the plate, as illustrated in Fig. 1. Under certain stress gradients, the reflected or 
refracted rays will deviate from parallelism and form an envelope in the form of a three- 
dimensional surface in space. This surface, which is called the caustic surface, is the locus 
of points of maximum luminosity in the reflected or transmitted light fields. 

The deflected rays are tangential to the caustic surface. If a screen is positioned parallel 
to the x3 = 0 plane, so that it intersects the caustic surface, then the cross-section of the 
surface can be observed on the screen as a bright curve (the caustic curve) bordering a dark 
region (the shadow spot). Suppose that the incident ray, which is reflected from or trans- 
mitted through point p(x,, x2) on the specimen, intersects the screen at the image point 
P(Xr, X,). The (X,, X,) coordinate system is identical to the (xi, x2) system, except that 
the origin of the former has been translated by a distance z. from the screen (zO can be 
either positive or negative). The position of the image point P will depend on the gradient 
of the optical path change AS(x,, x3 introduced by the specimen as well as on the distance 
z0 and is given by Rosakis and Zehnder (1985) : 

X = x+z,V(AS(x,, xz)), (1) 

where X = _&e,, x = x,e,, o! = 1, 2, and e, denote unit vectors, and V denotes the two- 
dimensional gradient operator. Relation (1) describes the mapping of the points on the 
specimen onto the points on the screen. 

2.2. The ~itial curve and its ~ignl~ca~ce 
If the screen intersects the caustic surface, then the resulting caustic curve on the screen 

is the optical mapping of the locus of points for which the determinant of the Jacobian 
matrix of mapping equation (1) must vanish on the specimen, i.e. 

4x1, x2 ; zd = det k,~l = det [6, +z~(AS),~~] = 0. 

Soecimen Virtual Screen Specimen Real Screen 

(a) (W 

(2) 

Fig. 1. Caustic formation in (a) reflection, (b) transmission. 
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Equation (2) is a necessary and sufficient condition for the existence of a caustic curve. The 
locus of points on the reference plane (xi, x2, x3 = 0) for which the Jacobian vanishes is 
called the initial curw whose geometry is described by eqn (2). All points on the initial 
curve map onto the caustic curve. In addition, all points inside and outside this curve map 
outside the caustic (Rosakis and Zehnder, 1985). Since the light transmitted through or 
reflected from both the interior and the exterior of the initial curve maps only outside the 
caustic, the area within the caustic remains dark and is customarily referred to as the 
shadow spot. Also, since the light that forms the caustic curve originates from the initial 
curve, essential information conveyed by the caustic comes from that curve only. 

Equation (2), defining the initial curve, depends parametrically on zo. Thus, by varying 
zo, we may vary the initial curve position. If z. is large, the initial curve will be far from the 
crack tip. If z. is small, the initial curve will be close to the crack tip. Variation of z. can 
easily be achieved experimentally by simply varying the focal plane of the recording camera 
system. This is an essential property of the method of caustics, and it can be utilized to 
“scan” the near-tip region to obtain information regarding the nature of the deformation 
field at different distances from the crack tip. For the present work, we require that the 
initial curve is located outside the near-tip plastic and three-dimensional zones. 

3. INTERPRETATION OF CAUSTIC PATTERNS IN THE PRESENCE OF TRANSIENT EFFECTS 

3.1. Caustics generated by non-uniformly propagating cracks 
For opaque specimens, caustics are formed by the reflection of light rays from the 

polished specimen surface. The shape of the caustic curve depends on the near-tip normal 
displacement u3 of the plate surface, initially at x3 = h/2, where h is the undeformed 
specimen thickness. For transparent specimens the optical path change AS depends on both 
local changes in thickness and on local changes in the refractive index. The change in the 
refractive index An is given by the Maxwell relation : 

where D , is the stress optic constant and Gij are the nominal stress components. The above 
relation is strictly true for mechanically and optically isotropic linear elastic solids. 

For a cracked linear elastic plate of uniform thickness and finite in-plane dimensions, 
the optical path difference AS, in general, will depend on the details of the three-dimensional 
elastostatic or elastodynamic stress state that would exist at the vicinity of the crack tip. 
This will be a function of the applied loading, in-plane dimensions and thickness of the 
specimen. In the present work, we assume that the two-dimensional asymptotic analyses 
provide adequate approximations for AS(x,, x2). In particular, it has been suggested that 
the conditions of generalized plane stress will dominate in thin cracked plates at distances 
from the crack tip larger than half of the specimen thickness (Rosakis and Ravi-Chandar, 
1986; Yang and Freund, 1985) which implies that if the initial curve is kept outside the 
near-tip three-dimensional zone, the resulting caustic could be interpreted as the basis of a 
generalized plane stress analysis. Furthermore, in this paper, we also assume that the initial 
curve is always kept outside the plastic and the fracture process zones, and this enables the 
asymptotic elastic analysis to be employed to interpret the caustic pattern. 

Under the aforementioned conditions, the optical path difference AS(x,, xZ) will be 
(Rosakis, 1992) : 

where 

AS(x,,xd = cht6,,(x,,xz)+~.22(x,,xZ)l, (3) 

c= [(D,-~@z-lj)=q, fortransmission, 

for reflection, 

and E and v are the Young’s modulus and the Poisson’s ratio of the material respectively, 
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c, is called the stress-optical coefficient, and 6,, and &22 are thickness averages of the stress 
components in the solid. These stress components will be provided by the generalized plane 
stress solution of the elastostatic or elastodynamic problem under investigation. 

Consider a planar, mode-1 crack that grows through a two-dimensional, homogeneous, 
isotropic, linearly elastic solid, with a non-uniform speed v(t), along the positive x1- 
direction. (x1, x2) is a coordinate system which translates with the moving crack tip. 
The asymptotic stress around the tip of a non-uniformly propagating dynamic crack was 
presented by Rosakis et al. (1991). Let the scaled polar coordinate system (r,, 0,) and (r,, 0,) 
be defined as : 

aI s(fb-2 O,,S(t) = tan-’ i 
i 1 

7 
Xl 

v’(t) 
alf,w = l- 2, 

Cl,s 

where cl and c, are the longitudinal and shear stress wave velocities of the elastic material, 
respectively. Then, the first stress invariant corresponding to the fully transient dynamic 
crack is (Freund and Rosakis, 1992) : 

where 

4 l+a,z d 
A&) = ~__ 

3&-r W) G(f)7 

D(v) = 4a,a,-(1 +~r,2)~, 

and K?(t) is the dynamic stress intensity factor at the crack tip, p and p are the mass density 
and the shear modulus of the elastic material, respectively. 

By substituting the above expression for the first stress invariant into the optical path 
difference relation (3), the mapping equation (1) becomes : 



880 C. Llu et al. 

x* r, sine, = ___ +a,z,chp(cf-c,2) $Ao(t)r;‘/2sinT 
[ I 

-I~~~~~~~)j,(l-~~sin~-~sin~, 

+i,(t)[3(1-$)sin:+(l-$)sinT-gsin?] 

15v2 
+=A,(t)sin; r;‘12 . I I 1 

The initial curve defined by eqn (2) is : 

1 +z&+: -c,‘> - $4&)l15/kN~ + 
15v4 I p42(t)cOS~ I 

-Dl'{A,(t)}(f~,(e,)+a:fd,2(B,))+B,(t)(ft;1(e,)-a:fb22(e,)) rr312 II 
+af[zdhp(cf -&I2 { -~~a,(l)m5+~~o(n[~~~~~~cose, 

-o:(A,(f))9~d;(e,)+B,(t)9~(e1) 

(6) 

-40) 
i 

~~2~~)9:(sl~+~,l~~,(n~~~~2~4)f:,(el~-~~l(4~~~2~el~ 

-2f42m.f”;2uoi 1 -B:(t)[f~,(e,)fb,2(e,)+(f~2(e,))2i rC3 = 0, II 
where 

50, 54 
9M) = (_fY 46) -fd22(e,)) c0s2 +2fj2(4) siny’ 

58, 54 
9X4) = VW,) +f”z2(e,)) c0s2 +2f%e,) sin-Z_. 

9W,) = (f?, uv -fd22v3,)) CO+ +2ft2m sin:, 

34 38, 
9bzm = ~f’;I~~l)+f”22~e,~~~~~T+zft;z~e,~sin-?_, 

(7) 

f:,(e,) = -&OS% + $COS?, 
I 
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In the expressions above, A,(t) is determined by the dynamic stress intensity factor 
history, K;(t), and the propagating speed of the crack tip, v(t). D,‘{A,,(t)) depends not 
only on K?(t) and u(t), but also on the time derivatives of these quantities. Besides K?(t) 
and o(t), B,(t) also depends on the acceleration of the crack. From the first stress invariant, 
eqn (4), we can see that the dynamic transient effects, D/{A,,(r)> and B,(t) inter the 
expression only through the second and the third terms. If we also want to investigate the 
higher order time derivatives of K?(t) and v(t), we have to use higher order terms in the 
asymptotic expansion of stress. The coefficients A l(t) and A*(l) are undetermined by the 
asymptotic analysis. Their values can only be determined for particular initial/boundary 
value problems. It should be observed at this point that the el variation of the higher order 
terms in relation (4) is different from that of the steady-state higher order expansion 
presented by Dally et al. (1985). Relation (4) reduces to the steady-state case only if both 
Ki’ and u are constant. 

From the expressions above, we can also see that if the crack-tip speed v(t) is a constant, 
i.e. ti(t) = 0, and therefore &(t) = 0, eqns (5), (6) and (7) give the caustic mapping equation 
and the initial curve equation corresponding to transient crack growth under constant 
velocity and varying stress intensity factor. Furthermore, if the time derivative of the 
dynamic stress intensity factor, &‘(t) is also zero, D,’ {A,,(t)} will be zero. In such a case, 
eqns (5) (6) and (7) describe the caustic curves corresponding to steady-state crack growth 
evaluated on the basis of a three term steady-state expansion for the stresses. If in addition, 
A2 vanishes, these relations exactly reduce to the results obtained under the assumption of 
&‘-dominance (Rosakis, 1980). For stationary cracks (u = 0), D,‘(Ao(t)} and B,(t) all 
vanish even if $ # 0. Depending on whether the loading is dynamic or not, A2 may be 
either a constant or a function of time. If A2 happens to vanish, then a situation of Ki- 
dominance is established outside the near tip three-dimensional zone and the equations of 
the caustics reduce to those of an epicycloid (Theocaris, 198 1). 

3.2. Relation between the dynamic stress intensity factor and the geometrical dimensions of 
caustics 

For a given specimen with a straight mode-1 crack, if the initial conditions and the 
boundary conditions are prescribed, and also if the crack propagation history, i.e. the 
propagating velocity of the crack tip y(t), is known, then the history of the dynamic stress 
intensity factor, K?(t), can be determined. Consequently, D,‘{Ao(t)} and B,(t), which 
depend on the dynamic stress intensity factor and the crack-tip velocity as well as on their 
time derivatives, can also be determined, and so can the coefficients A I(t) and A,(t). 
According to eqns (5), (6) and (7), the shape of the initial curve and the caustic pattern 
corresponding to this dynamic crack propagation process for each instant of time can be 
calculated. However, in laboratory situations the inverse problem is encountered. That is, 
the values of K!(t), D,‘{A,Jt)}, III(t), A,(t) and A,(t) have to be determined from the 
caustic pattern. Indeed, in dynamic fracture experiments we need to establish a method of 
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infering the stress intensity factor history from local near tip measurements, since the 
boundary/initial value problem is usually too difficult to solve. In this section, we provide 
the main steps of the derivation of the relation between the dynamic stress intensity factor 
and some experimentally measurable quantities (i.e. geometrical characteristics of caustic 
and crack-tip velocity). 

Since the caustic mapping equations (5) and (6), and the initial curve equation (7) are 
too complicated, we now make the assumption that V/C, c 1. This assumption is realistic 
since in most solids terminal crack growth velocities do not exceed a speed of 0.2c,, or 
approximately 0.5~~ before branching. cR is the material Rayleigh wave speed in plane stress. 
It is thus felt that assuming that v/c, << 1 will lead to a useful and accurate simplification for 
the mapping equations. By making this simplification, eqns (5) and (6) become : 

x, = r,cose,+B(t)r~‘~2cos$4(t)r,“2cos~-;b(t)r~”2 
> 

) (8) 

rl sin 8, 
x2 = ___ +Cri 

aI i 
R(t)r;“‘sin% -A(t)r, “2 sin: + kj(r)r;1’2 3sin; fsin: 

( )I 
, 

(9) 

and the initial curve equation associated with the above mapping equations are obtained 
by requiring that the Jacobian of the above transformation vanishes, i.e. 

+ 
i 

~(1-af)A(t)r~3’2cos~ + ~afB(t)A(t)r[4cosbr,- iafA2(t)r;’ 
I 

-B(t) $ (3+5a:)cosF -3(1-af)cos~ 
i[ 1 r;3’2-3afR(t)r;4cos8, 

+ ~A(t)(l+3cos28,)r;3+ ~&~)(1+3cos28,-4cos3~,)r; = 0, I (10) 

where 

R(t) = z$hp(c:-c&4&) = z&F(v) 

fi 
K;‘(t), 

I 

A(t) = z,chp(c: - c,2) 1 15v2 
p~2(WlliAo(t)J 3 

1 I 

B(t) = z&zp(c: -&l,(t), 

F(v) = (4 - G)(l + d) 

4a,a, -(l +a,2)2 ’ 

Now, given experimentally obtained caustic patterns and an appropriate numerical scheme, 
eqns (8), (9) and (10) can be used to obtain the values of k(t), a(t) and b(t) as functions 
of time. 

Since the initial curve equation (10) is still too complicated to use, and in an attempt 
to retain some of the simplicity of the classical analysis of caustics one can introduce a 
simplifying assumption regarding the nature of the initial curve by assuming that the initial 
curve remains a circle of radius r@(t), i.e. 
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r1 = ($x,R(t))2’5 = ro(t), (11) 

which implies that the size of the initial curve is only determined by the instantaneous value 
of the dynamic stress intensity factor, as well as the propagating velocity of the crack tip, 
rather than the time derivatives of these quantities. By substituting rl = r,,(r) into the 
mapping equations (8) and (9), the parametric equations of the caustic are obtained as 
follows : 

X, =~O{cost$+~[cos~-!&cos;-~(cos~-cos~)]}, (12) 

X2=~0{si$+~[sin~-$$sin~+$$(3sin~+sin~)]~. (13) 

For a(t)r,J&r) + 0 and @r)r,,/&t) + 0, eqns (12) and (13) reduce to the parametric 
equations for dynamic caustics obtained on the basis of Kf-dominance (Rosakis, 1980). 
The validity of the assumption regarding the circularity of the initial curve will be justified 
in Section 4 in connection with the Broberg problem. 

The two caustic curve dimensions chosen in this analysis are the maximum transverse 
diameter D of the caustic and the distance between the point of intersection of this diameter 
with the X,-axis and the front point of the caustic. This length will be denoted by X. These 
lengths are shown in Fig. 2. If the end point of the caustic diameter has coordinates X\D) 
and XLD), respectively, and if the front point of the caustic curve, has coordinates X$) and 
XF) = 0, then one can use the mapping equations (8) and (9) to write : 

x\F’ = ro + R(r)r, 3’2 -&t)r; “2, (14) 

xp’ = 0, (15) 

381’u’ 
XC,“) = r-0 cos ef”’ + B(t)r, 3’2 co.3 ~ 

2 
_J(t)r; ‘P ,,, 7 

- ; B(r)r, “2 ( COST -cosq, (16) 

xy = T o sin tlfD) 

ai 
+ a, 

I 

3efn) 
R(t)r; 3/2 sin - 

2 
-A(t)r, iI2 sin? 

+ ; B(t)r, “’ ( ep 5efD) 
3sin- +sin- 

2 >I 2 ’ 
(17) 

where f),(“) is the angular coordinate of the point (ro, 0,‘“)) on the initial curve that maps 

Fig. 2. Evaluation of the dynamic stress intensity factor &‘(I) by measuring two geometrical 
dimensions, D and A’. 
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onto the point (X (p’ , XiD)) where Xz is maximum. Since at this point, X2 is a local maximum, 
the following condition has to be met : 

8x2 ~ = 0, 
ae, 

for 8, = of”‘. (18) 

The relations between the experimentally measurable quantities, D and X, and the 
points (X\D’, XiDp,) and (X\“‘, XiD)), are : 

D = 2XiD), (19) 

Then, the relations that should be used to obtain the unknown coefficients are : 

D sin @“) 

-_= 2- ( + 2 sin 

38fD) 

10 4 3 - > 2 -2~x,A(t)r,~‘~ sin? +a,B(t)r&3/2 ( 3sinT +sinF > 

, 

(21) 

l+$-cOsep-~cOs 

I I 

!!$(t)r;3( 1 -,,,F) 

e,(D) 5ejD) 
cos- -cos- 2 

2 > 
(22) 

and 

+ f cx,B(t)r, 3’2 3cose +5cosF) = 0. (23) 
2 

In the above expressions, relation (11) between R(t) and r. has been used. It seems that 
there are only three equations, (21), (22) and (23), but four undetermined parameters, r. 
(or R(t)), e{“), A(t) and B(t). However, if the crack propagating velocity, u(t) and thus d(t) 
are independently known, then a(t) is related to R(t) by : 

b(t) = 
2ti(r) II 
-_41jw 
ai ci 

and thus B(t) and k(t) are not independent variables. So actually there are only three 
undetermined parameters, and they can be obtained by solving eqns (21), (22) and (23). 
By eliminating a(f) and L?(t) from eqns (21), (22) and (23), we obtain the relations : 

D 
- = g,(f+D))-2g;(B,‘D)) tan?]+ s {g2(0$D))-2&(0{D)) tan~}$, (24) 
r0 

where 
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In the above expressions, the prime denotes differentiation with respect to the argument 
O,(“). Consequently, when D and X are measured, r. and f9,c”) can be obtained by solving 
eqns (24) and (25), and therefore, the dynamic stress intensity factor, K!(t), can be obtained 
from relation (11). 

To be more explicit, we solve eqn (24) for ro, which then can be expressed as : 

D 
r-0 = ___ 

hew 
1 _ 2~; (em 

9 I (em 
tanFr’{i +/mj-‘, (26) 

where 

G, (efD)) = 9 I (e;n)) - 29; (ep) tan 7, 

ep 
Gz (e/D)) = g2 (ep) - 2g; (e,cD)) tan 2. 

By using eqns (11) and (26), the dynamic stress intensity factor can be expressed as : 

The above expression still contains an undetermined parameter, t?fD). However, if eqn (25) 
is solved for ro, we have : 

2d(f)~ f2ce,cD)) 
+ x [f, (e(D))]* . 

Consequently, the angle 8 fD’ that appears in the above equations is the root of the following 
trigonometric equation : 

x f,uv9 1 -=-{-+/-m]x{;+/mF’. (28) 
D G, (8fD’) 2 

Under the fully transient dynamic condition, eqns (27) and (28) give the final relation 
between the dynamic stress intensity factor, K;(r), and the experimentally measurable 
quantities, D and X. 

It should be pointed out that for the case of a non-uniformly propagating crack, the 
dynamic stress intensity factor, K:(f) measured from the caustic patterns, is explicitly 
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related to the crack-tip acceleration, ti(t). It is also implicitly related (through Of”‘) to 
k;‘(t). The coefficient A,(t) can also be obtained in the following way : 

and 

A*(f) 

4c: 40 

= 15v2 z&&2-c,‘) + 

(30) 

where r,/D is given by eqn (26) and eiD) by eqn (28) i n te rms of the measurable quantities 
X and D. Once the caustic diameter D is measured at different times, A,(t) is determined 
from (30), provided that many sequential measurements of caustic patterns are available 
and if the time derivative in the formula can be evaluated by some numerical procedures. 

In an experimental situation, caustic patterns are photographed and D and X are 
measured. Equation (28) is then used to obtain Of”‘, substitute it into eqn (27) and thus 
obtain K!(t). From eqns (29) and (30), coefficient A*(t) can also be determined. 

For the case of constant velocity, B(r) = 0 (C(t) = 0), eqn (27) corresponds to transient 
crack growth under constant velocity and varying stress intensity factor. Equation (30) 
then gives an explicit relation between X/D and 0, (D) If the time derivative of the stress . 
intensity factor, k;(t), is also zero (steady state), then D/ {A,(t)} = 0. For both d(t) = 0 
and steady state, the relation between the dynamic stress intensity factor, K;(t), and the 
caustic diameter, D, have the same form. The only difference comes in the value of OfD’, 
which is directly related to the ratio X/D. For the transient constant velocity case (i)(t) = 0, 
R;‘(t) # 0): 

4c: 
A*(f) = __ 

1%’ 

For the steady state case (C(t) = 0, k:(t) = 0) : 

4Cf A 
AZ=-_? 

1% zochp(c:-c,z)’ 

(31) 

(32) 

or, in this case, A2 is directly related to the caustic diameter. 
Furthermore, if we only retain the singular term in the asymptotic stress expansion, 

then in the caustic mapping equations (8) and (9), and the initial curve equation (10) a(t) 
and B(t) will be zero, and eqns (8), (9) and (10) reduce to the same equations used in the 
classical analysis (Rosakis, 1980). If we still make the assumption of (1 l), the unknown 
parameters will reduce to two (i.e. K?(t) and OtD)), and so we only need to measure one 
quantity from the caustic pattern, say the diameter, D. By using eqns (21) and (23), the 
dynamic stress intensity factor corresponding to the classical analysis can be determined. 
Now eqn (27) becomes : 

K:(t) = 
2J2n D 512 

I 1 3alchz0~(a) g1 (ep) . 

Also, if A(t) and B(r) are set to zero, the maximum condition (23) requires that 

g;(p) = 2 

(33) 

and this will provide the value of OiD) as a function of crack-tip velocity, u. Now define 
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C(v) = -& 3.17 s/2 J.9 I I (@“9 ’ 

where C(v) is a function of the crack-tip velocity, a. Equation (33) can be rewritten as : 

(35) 

which has the same form as that given by Rosakis et al. (1984). Equation (35) is the result 
of the classical analysis of the caustic pattern and is widely used in the experimental 
interpretation of caustics corresponding to elastodynamic crack propagation. 

Moreover, as u = 0 (stationary crack), CI~ = 1, F(v) = 1 and g’, (0,(“)) = 0, which gives 
(!I{“) = f30 = 72”, and gl(O(“‘) = 3.17, then C(0) = 1 and (Theocaris, 1981; Beinert and 
Kalthoff, 1981) : 

(36) 

This equation holds not only for the stationary crack subjected to dynamic loading, but 
also for the static problem, where K:(t) should be replaced by K,. 

4. AN EXAMPLE: THE BROBERG PROBLEM 

4.1. The caustic pattern corresponding to the Broberg problem 
In order to illustrate the effect of the higher order terms in caustic patterns obtained 

for the case of highly transient crack growth problems, and to check the ability of eqns (27) 
and (28) to furnish the correct values of K:(t), the solution of a particular elastodynamic 
boundary value problem is considered. This is the plane stress problem of a crack growing 
symmetrically from zero initial length at constant velocity under uniform remote tensile 
stress gm. The plane of deformation is the x;,x;-plane and the crack lies in the interval 
- vt < x’, -C vt, x; = 0, where v is the constant speed of either crack tip. This is the problem 
first analysed by Broberg (1960). 

An expression for the first stress invariant directly ahead of the crack tips is obtained 
by Freund (1990). On the line xi = 0 : 

all+022 = -2G* ( >s I_“: ‘ix; f (0 
cf ,,c, (v-‘_tl)3,2dt~ (37) 

where Z(v/cJ is a known function of v, and 

f(t) = 
(c$252) 

(52-c;2)r/2(v- l+(f)3/2* 

Focusing on the crack tip moving in the positive x’,-direction, and expanding eqn (37) in 
powers of x1 = x’i - vt near x, = 0, we obtain : 

011 +a22 = WJ) ~{X;“‘+a[:+~]~~/~~+o(x~/~), (38) 

where 

W(v) = 
2(1 +a,‘)(a:-Cr:) 

D(v) ’ 
(39) 
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K!(t) = 
c:wcmv) 

Up2 
a,Jz (40) 

If the expansion (38) is compared with the general expansion (4), in which B,(t) = 0 
(z?(t) = 0), and 0, = 0, r, = x,, and terms of like powers in distance from the crack tip are 
collected, then explicit relations for the coefficients in the expansion are obtained as : 

Since the coefficients of 0,’ {A,(t)} and A*(t) are proportional to l/d, the third term in 
the near tip asymptotic expansion of the first stress invariant is very large during the early 
stages of crack growth, possibly dominating the square root singular term. As a result, even 
though the crack-tip speed is constant, transient effects do exist in the near tip field. 

For this particular problem, we normalize the caustic mapping equations (5) and (6), 
and the initial curve equation (7) with the length r. = (3al~/2)zi5. This length is related to 
the value of the dynamic stress intensity factor, K;(t), of the Broberg problem by eqn (11). 

The normalized caustic mapping equations and the initial curve equation then become : 

2 

K ) V2 

-2 1-s cos~-~cos~ ‘1 
- l/2 

7 (41) 
I I IK > r0 

and 

+r(f~,(s’~+.:f:2~e’~~](~~3’z+2[(~+~+f~)cos8’+~~~~~‘~](~~4} 

1r02 

-- ( )K 

5 5 f’W 2 4 

> ( 

5 5 - 
9 vt 4 + 4cL: + vf (l/V) + 2 

*‘(l/v) s$(s) 

4 + 4cI: + vf(l/o) > ’ 

(43) 
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where the functions f$(0,), and gt(0,) are defined in the previous section [see eqn (7)]. We 
can see that the coefficients of higher order terms in the non-dimensional caustic mapping 
equations and the initial curve equation, are proportional to a non-dimensional parameter 
r&t. Relations (40) and (11) provide an expression for r&t with respect to time after crack 
initiation and z0 as follows : 

r0 -_= - 
vt 1 3 (1 +as’)1(2+,) CC, 2’5 &X 4’5 - - 

4 
1-u; l-v >( > c,t ’ 

where c is a material constant and is given by eqn (3). For a given experimental set up and 
specimen, c, crm and h are fixed. In particular the distance between the specimen and the 
focal plane of the recording camera, zo, is set prior to the experiment. 

As t + co, the ratio r,/vt vanishes and eqns (41)-(43) reduce to the classical analysis 
of dynamic caustics obtained on the basis of Ki’-dominance. Indeed this is consistent with 
the fact that as t + co, 

which indicates that steady-state and Kf-dominant conditions are approached. For a fixed 
time t > 0, the ratio ro/vt may vanish only as z. --* 0. For this case, the initial curve shrinks 
to the crack tip and even if k:(t) # 0, the caustic is generated from a Kf-dominant region. 
For a fIxed zo, at short times after crack initiation, r,/ut -P co (k!(t) + a~), and therefore 
transient effects are predominant. So the change of the non-dimensional parameter ro/vt 

from zero to infinity characterizes the relative influence of transients on caustic shape and 
size. 

A qualitative discussion of the influence of higher order terms and crack-tip velocity 
on the caustic and initial curve shapes is presented in Figs 3 and 4. Figure 3 shows the 
influence of crack-tip velocity on the caustic mapping for r,/vt = 0.3. It is obvious that in 
the range 0.1 < v/c, < 0.5, changes in crack-tip velocity do not markedly influence the 
caustic shape. The initial curve also remains almost circular. The results displayed in Fig. 
4 are more striking. Here, the crack-tip velocity is fixed (u/es = 0.3). The ratio ro/ut is varied 
to investigate the effect of transients. Indeed, variation of ro/vt from 0 to 1 .O creates rather 

v/s - 0.f 

------ v/es * 0.3 
-.--.--. V/% IO.5 

Poisson’s ratio v = 0.3, re/vt = 0.3 

Fig. 3. Three-term simulations of the initial and caustic curves corresponding to the Broberg problem 
for different crack-tip velocities, and for r&t = 0.3. 

SAS 30:7-B 
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- FJV’ - 0.0 

----- r d vt - 0.3 

--.--. rJvt - 0.6 

Poisson’s ratio v - 0.3, v/c, = 0.3 

Fig. 4. Three-term simulations of the initial and caustic curves corresponding to the Broberg problem 
for different values of r&t. which represents the scale of the transient effects, and for u/c. = 0.3. 

large variations in caustic shape. The value of r&t = 0 corresponds to the caustic shape 
obtained by the classical @-dominant) analysis of caustics. The differences in D and X 
observed for other values of r&t are an indication of the error in Kf measurement if the 
classical analysis of caustics is used. On the other hand, it is very interesting to note that 
the initial curve is hardly influenced by the value of r&t. It remains almost perfectly circular 
with a radius rl = to as assumed by eqn (11) of our analysis. The center of the circle is 
moved backwards slightly as the value r&t becomes relatively larger. The major assumption 
pivotal to the derivation of the relation between K:(t), D and X [eqns (27) and (28)] is the 
circularity of the initial curve [eqn (1 l)], and we feel that this provides a strong justification 
for our simplifying assumption. 

4.2. Comparison of the dynamic stress intensity factor obtained from diflerent measurement 
methods 

The main purpose of this section is to verify the feasibility and accuracy of the 
measurement method proposed in Section 3.2 [eqns (27) and (28)]. This method provides 
a relation between the dynamic stress intensity factor at the tip of a transiently propagating 
crack in terms of experimentally measurable dimensions of the caustic curve. We are also 
interested in comparing values of Kf obtained from various measurement techniques, and 
to access their relative accuracy. More specifically, the classical analysis of caustics, which 
is based on the assumption of K;1-dominance, will be compared with the method presented 
above. To implement this objective, the exact caustic patterns are generated for the Broberg 
problem by using eqns (41), (42) and (43). Then measurements are performed on these 
exact caustic patterns either by the classical analysis method or by the method proposed 
here. 

In the classical analysis of the caustic pattern, the only quantity to be measured is the 
diameter of the caustics, D, and this quantity is related to the dynamic stress intensity 
factor, K:(t) by relation (35) for different crack propagating velocities. In the method 
presented in Section 3.2 [eqns (27) and (28)], the determination of K:(t) also requires the 
evaluation of another parameter, I$“‘. To calculate 0$, two dimensions of the caustic need 
to be measured. One is the transverse diameter, D, and the other, X, is the distance from 
the intersection of this diameter with the X,-axis to the front point of the caustics. The 
parameter f$“’ is then given by solving eqn (28), which involves D and X as well as their 
ratio. Since the velocity of the crack is constant in the Broberg problem, eqn (28) implies 
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Fig. 5. Value of the parameter OfD’, solved by eqn (26), versus the ratio X/D, for different crack-tip 
velocities. 

that fI,(“) is a function of the ratio X/D only. Figure 5 presents the variation of the parameter 
f3fD) versus the ratio X/D for different crack-tip propagating velocities. As we can see from 
this figure, the parameter e,(D) is very sensitive to the ratio of X/D, but is not sensitive to 
the crack-tip velocity. The effect of transience on X/D is shown in Fig. 6. Figure 6 gives the 
variation relation between the ratio X/D and the non-dimensional parameter r&t. It is 
shown that when the stress state around the crack tip deviates from Kf-dominance (r,,/ 
vt + a), the ratio X/D deviates from its steady-state value which implies that the caustic 
becomes more elongated in the X*-direction due to the existence of transient effects for this 
particular problem. Since the parameter 19,(~) is very sensitive to the X/D, the accurate 
measurement of X and D becomes a crucial aspect of the new interpretation method. 

.520 

V/G - 0.1 

.515 
------- v/G IO.2 

-- ._-. --. v/e5 IO.3 ,A / 
. .._-.._-.. v/e5 . 0.4 

/ 
,A 

_.-._.-.-. v/c5 * 0.5 ..’ 
.510 

s .505 

.500 

.495 

Foi55an’s ratio v - 0.3 

.490 
.O .2 .4 .6 .6 1.0 

M3MIENsIaUL PAwETEf?, r&t 

Fig. 6. Ratio X/D versus the nondimensional parameter r&f, for different crack-tip velocities. 



892 C. LIu et al. 

Quantitative estimates of the error incurred by the classical interpretation of caustics 
during crack growth are presented in Fig. 7. Here the ratio K~~caustic)/lY~~the~,~ is presented as 
a function of the parameter r&t for different crack-tip velocities. As anticipated earlier, as 
r&t + 0 the classical analysis becomes accurate (either zero initial curve or a long time 
after initiation). However, as r&t + 00, we observe large deviations of Kft,“,tic) relative to 

J+tlW 7 which is known already (see lines with square symbols). The figure also presents 
the same ratio obtained if the numerically constructed caustics are analysed on the basis of 
our improved method [eqns (27) and (28)]. As is obvious from the lines marked by the 
circles, errors of less than 5%, which are acceptable in the experimental investigation of 
dynamic fracture mechanics, are obtained. In both cases it is shown that the effect of 
velocity is small especially when the improved analysis is used. The 5% relative error 
observed in this figure is caused by the assumption of circularity about the initial curve. 
Once again, the validity of this assumption is justified. 

An alternative representation of the above results is given in Figs 8-10. Here 
Kd I(caustic)/Kfctheo,) is plotted versus time from crack initiation. The results of both improved 
and classical analyses of caustics are included. Figure 8 shows the variation of this ratio 
for a variety of crack-tip velocities for material parameters corresponding to 4340 steel, 
z0 = 2.0m, and specimen thickness h = 0.01 m. It indicates that the classical analysis of 
caustics becomes accurate only after a certain time from crack initiation. Figure 9 shows 
the same ratio as a function of time for different values of am/E, but the material parameters 
correspond to PMMA. This figure indicates that for a higher load level, the transient effect 
is much more significant than for the lower load level, especially at the time near the crack 
initiation. This reflects the fact that at a specific time t and fixed zO, higher a,/E implies 
larger initial curve radii [see eqn (44)]. It is seen from these two figures that as t < 2Ops, 
big errors have been observed when the classical analysis is used. From the Broberg problem, 
we have @/K;’ = 1/2t. So for this particular problem, as &‘/Kf > 2.5 x lo4 s- ‘, transient 
effects cannot be neglected, and this gives an estimate of kp for which the improved method 
promises to provide accurate values of Kf. 

Figure 10 shows the dependence of this ratio on zo. Here, it is evident that as z. is 
decreased (the initial curve shrinks to the crack tip) the value of Kfccsustic) obtained from the 
classical analysis of caustics slowly approaches K&heo.J. Nevertheless, large errors still persist 
near initiation. From the practical point of view, this is not a consolation since acceptable 
reductions of z. (and thus ro) are limited by the size of the near tip three-dimensional zone 

2.0 1 I 
- V/C,‘O.l Poisscn’s ratio y - 0.3 
------- V/% I 0.3 
._._ -.--. v/s IO.3 

?1.5 
. ..__..__.. v/c, I 0.4 

g 

_._._._._. v/c, I 0.5 

%,, 
3 - 
4J 
5 

G .5 

ClSSSical analysis, eqJaticm (35) 
modified m&hod. eqJation?i cw ma (28) 

.” 

.O .2 .4 .6 .6 1.0 

r@t 

Fig. 7. Comparison of the dynamic stress intensity factor inferred from the modified method and 
the classical analysis for different values of r&t, and for different crack-tip velocities. 
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Fig. 8. Variations of the ratio ccauatisj /K&,co,j with the time after crack initiation for different crack- 
tip velocities. The material parameters correspond to 4340 steel. 

(-0.5h). Here the advantage of the modified interpretation becomes clear since accurate 
results can be obtained with relatively large values of zO corresponding to caustic measure- 
ments outside the near tip three-dimensional zone. 

5. DISCUSSION AND CONCLUDING REMARKS 

Motivated by recent experimental evidence (Krishnaswamy and Rosakis, 1991; 
Krishnaswamy et al., 1992) that shows the inadequacy of the classical analysis of caustics 
in furnishing accurate values of K;’ in the presence of transient effects, a modified analysis 
of the technique is presented here. This analysis is based on a fully transient higher order 
expansion recently developed by Freund and Rosakis (1992). The improved analysis of 

.------ 
__.--._-. 

20 - 2.0 n 
h - 0.01 I 

0 10 20 30 40 50 

TIME AFI'ER INITIATION, t (jmc) 

Fig. 9. Variations of the ratio ~~~,,rj /&$,eo.j with the time after crack initiation for different load 
levels, u,/E. 
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Fig. 10. Variations of the ratio Kd I~murtic~/K&hco.~ with the time after crack initiation for varying 
experimental parameter zW 

caustic patterns includes the influence of transients resulting because of the existence of 
non-uniform K;(t) and v(t) histories [effects of k!(t) and d(r)]. The analysis can be used 
to obtain K:(t) as well as the values of higher order terms in terms of the geometrical 
characteristics of the caustic curves. The resulting expressions contain the classical results 
(static or dynamic Kf-dominant analyses) as special cases. The relative performance of the 
improved and the classical analyses is compared. This is done by considering the Broberg 
problem as an example model of transient crack growth. Based on the full Broberg solution, 
the caustic curves are first constructed numerically. These curves are then analysed to 
obtain K!(t), as would be done in an experiment, and to compare with the theoretically 
known K;(t) time history. When the caustics are analysed on the basis of eqn (35) (classical 
#-dominant analysis) very large errors are obtained at times close to crack initiation. As 
a matter of fact, for this problem, such errors are unbounded as t + 0. On the other hand, 
when eqns (27) and (28) are used in the analysis of the caustic patterns, the measured 
K?(t) agrees very well with the theoretical value (to within 5%). This clearly indicates that 
the improved analysis of caustics, based on the higher order transient expansion, is capable 
of providing accurately the dynamic stress intensity factor history even if the crack growth 
event is very transient. 

Another noteworthy fact is that the crack-tip propagating velocity is assumed to 
be known in the analysis. However in real applications, the crack-tip position is only 
approximately known, since the crack tip is covered by the dark shadow spot. This problem 
can be overcome either by simultaneously using some other measurement techniques which 
can provide the crack-tip position at each instant of time, or by the following iteration 
procedure. At the beginning of the iteration process, we can assume that the caustic diameter 
D passes through the crack tip. As a result, X represents the distance from the crack tip to 
the front of the caustic curve. After the crack-tip position is determined by this assumption, 
an approximate crack-tip velocity history can be deduced. By carrying out the measurement 
method we proposed in Section 3.2, all parameters will be determined. If we now go back 
to eqn (8) to calculate the “real” distance from the crack tip to the caustic front, then the 
velocity history will be corrected. This procedure will be repeated until the crack-tip velocity 
converges at each instant of time. 

The shortcomings of the classical analysis of caustics discussed in this paper may have 
far-reaching consequences. In particular, caution should be exercised in the interpretation 
of experimental measurements obtained by caustics in the past, especially when highly 
transient crack problems were studied by the technique. 
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During the past two decades, the optical method of caustics has been widely used in 
experimental solid mechanics, especially in the study of dynamic fracture processes. Another 
method, which is also widely adopted, is photoelasticity. The history of photoelasticity is 
much longer than the method of caustics and therefore can be thought of as well developed. 
Nevertheless, due to the simplicity of the method of caustics either in the experimental set 
up, or in the data analysis, both techniques remain appealing as powerful candidates in the 
study of fracture processes. However serious discrepancies have been reported in the 
literature by a number of researchers using the classical interpretation of caustics or 
photoelasticity. Nigam and Shukla (1988) have compared the methods of photoelasticity 
and transmission caustics by performing experiments on identical specimens under identical 
loading. Their results show that while both methods work well for static problems, the 
method of photoelasticity gives values for the dynamic stress intensity factor which vary 
by about 30-50% from those obtained through the method of caustics. In this paper, we 
have shown by using the Broberg problem, that for transient crack propagation with 
constant velocity, the value of the dynamic stress intensity factor obtained through the 
classical analysis of caustics can indeed produce differences of that magnitude or even 
higher. This provides a qualitative explanation of the different results in K:(f) obtained 
from these two techniques in Nigam and Shukla’s paper. It should be pointed out that in 
the interpretation of their photoelastic fringes, Nigam and Shukla used a two-dimensional 
“higher-order” expansion suggested by Dally et al. (1985). This expansion is based on the 
steady-state asymptotic representation of the stresses around the crack tip. As was shown 
in this paper, only at the region very close to the crack tip, the transient effects will not be 
felt strongly. Outside this region the dynamic transient effects will affect the stress distri- 
bution. This issue was also discussed by Krishnaswamy et al. (1990) by using the CGS 
method. It has also been shown by Rosakis et al. (1991) that the asymptotic expansion of 
stresses under the fully transient condition is different from that obtained under the steady- 
state condition. The steady-state, higher-order expansion can be approximately used only 
when the time derivatives of all the coefficients are negligibly small and the crack-tip velocity 
is essentially constant. If these conditions are violated, the results of the steady-state 
approximation are questionable. Nonetheless, the use of a higher order steady state expan- 
sion is bound to be an improvement over the assumption of strict Kf-dominance. As a 
result, the values of K:(t) obtained by photoelasticity in Nigam and Shukla’s paper are 
expected to be close to the real value of Ki’ rather than the one obtained by the classical 
analysis of caustics. 

A long-standing issue of fundamental importance in dynamic fracture research is the 
connection between the dynamic fracture toughness, K &, and the crack-tip velocity. The 
debate, for the most part, has centered around the question of whether a unique, material 
dependent relationship exists between K& and U. Kobayashi and Dally (1980), Rosakis et 
al. (1984) and Zehnder and Rosakis (1990) among others, provide data sets that seem to 
indicate that a relation between K;lc and u exists and may reasonably be viewed as a material 
property. For most materials tested, K$ was found to be a weakly increasing function of 
crack-tip velocity, for low velocities, followed by a strongly increasing branch as the 
crack speed increases. The location of the steep branch depends on the material under 
consideration. The conclusion of the existence of a unique curve is usually made in the 
presence of experimental scatter in both K& and u(t). In particular, it should be emphasized 
here that the data sets provided by Rosakis et al. (1984) and Zehnder and Rosakis (1990) 
for AISI carbon steel, if collectively viewed, are characterized by a scatter in K$ of the 
order of 30% for crack-tip velocities in the range of 400-900 m s- ‘. Nonetheless it should 
also be remembered that the dynamic stress intensity factor was inferred by using the 
classical analysis of caustics which assumes #-dominance and neglects the history depen- 
dent, transient nature of the field. In addition, it should be recalled that two different 
specimen and loading geometries were used. Further, even within one specimen geometry, 
the resulting crack growth histories were intentionally varied (by controlling the starter 
notch radius), in order to span a representative range of crack-tip velocities. This is a 
common practice of most experimental investigations in this field. The above observations 
clearly indicate that each of these experiments was characterized by very distinct transient 
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crack growth histories. Finally, and as was observed by Zehnder and Rosakis (1990) if 
data from a single specimen were used to explore the variation of K& and v, very smooth 
curves resulted. However if such variations were collectively viewed, then the resulting data 
scatter was of the order of 30% in K&. 

Given the above observations, it is therefore conceivable that the observed maxi- 
mum scatter between tests may be due to phenomena of the type observed in this paper, 
i.e. errors associated with the classical analysis of caustics when strict Kf-dominance is 
violated. 

Another series of experiments leading to results that have yet to be explained are those 
reported by Dahlberg et al. (1980) and Kalthoff (1983), which seem to indicate that the 
dynamic fracture toughness could be specimen dependent. The claim of specimen depen- 
dence is made in the presence of 20% differences between curves obtained for each specimen 
configuration. In this case, as well, the observations related to the work of Rosakis et al. 
(1984) and of Zehnder and Rosakis (1990) are relevant. Here again the crack growth 
histories varies from configuration to configuration and from specimen to specimen. As a 
result, it may be possible to attribute the apparent specimen dependence of K& vs v to the 
specimen dependent transient nature of the region where the caustic measurement was 
made. 

On the basis of some crack propagation experiments in which the optical method of 
caustics was used, Takahashi and Arakawa (1987) proposed that the instantaneous value 
of dynamic fracture toughness of their material depended on the instantaneous crack-tip 
acceleration. As shown in Freund and Rosakis (1992) and Rosakis et al. (1991), however, 
the near tip stress field expansion involves crack-tip acceleration in its third or higher order 
terms. As a result, caustic patterns obtained from regions where higher order terms are 
important will exhibit acceleration effects. However, if caustics from such a region are 
interpreted on the assumption of Kf-dominance then it would appear that the instantaneous 
value of stress intensity factor, and thus of fracture toughness of the material, depends on 
the instantaneous acceleration of the crack tip. 

The above comments are also relevant to the works of Kobayashi and Mall (1978) 
and Ravi-Chandar and Knauss (1984) who suggested that although an average increasing 
trend in Kfc with crack-tip velocity seems to exist, no clear, unique relation between K& 
and v could be found. Here again the question of transients in the interpretation of 
caustics becomes important. As discussed by Freund and Rosakis (1992), this becomes more 
transparent in the second reference, since there, the analytical time history of Kf is available 
to be compared with the one inferred based on caustics. Indeed it is shown that the classical 
analysis of caustics is adequate in predicting Kf (t) during loading, up to the point of crack 
initiation. After initiation of dynamic crack growth differences of over 50% to the theoretical 
value are seen. 

We would like to conclude this discussion by pointing out that the above observations 
on past experimentation (including our own work) are by no means meant to discredit 
the use of caustics as an experimental tool in dynamic fracture studies. On the contrary 
we attempt to provide means to improve the accuracy of interpretation of this method 
which we believe to be a formidable tool for the study of transient crack problems. 
Indeed, given the extraordinary experimental simplicity of the technique and the large 
numbers of raw re-analysable data already available, this seemed to be a worthwhile 
task. In addition, we believe that the time for taking final positions in the debate regard- 
ing the existence of a unique K& vs v curve has not arrived yet. Our current observations 
merely suggest that the existing arguments (including our own in the past) based on exper- 
imental interpretations (for both photoelasticity and caustics) which neglect the transient 
nature of crack growth cannot be conclusive. We believe that further experimental study 
or even re-interpretation of raw experimental measurements using the recently available 
transient results is required to assess the possibilities and to resolve this issue once and 
for all. 

Acknowledgements-The authors would like to acknowledge the support of the Office of Naval Research through 
ONR Grand N00014-90-J-1340. 



Optical caustics 

REFERENCES 

897 

Beinert, J. and Kalthoff, J. F. (1981). Experimental determination of dynamic stress-intensity factors by the 
method of shadow patterns. In Mechanics of Fracture (Edited by G. C. Shih), Vol. VII, pp. 281-330. Martinus 
Nijhoff, The Hague. 

Broberg, K. B. (1960). The propagation of a brittle crack. Archiu. fur Fysik 18, 159-192. 
Dahlberg, L., Nilsson, F. and Brickstad, B. (1980). Influence of specimen geometry on crack propagation and 

arrest toughness. In Crack Arrest Methodology and Applications (Edited by G. T. Hahn and M. F. Kanninen), 
ASTM STP 711, pp. 89-108. 

Dally, J. W., Foumey, W. L. and Irwin, G. R. (1985). On the uniqueness of Kin-ci relation. Inf. J. Fracture 27, 
159-168. 

Freund, L. B. (1990). Dynamic Fracture Mechanics. Cambridge University Press, Cambridge. 
Freund, L. B. and Rosakis, A. J. (1990). The influence of transient effects on the asymptotic crack tip field during 

dynamic crack growth. Eleventh National Congress of Applied Mechanics, Tucson, Arizona, May. 
Freund, L. B. and Rosakis, A. J. (1992). The structure of the near tip field during transient elastodynamic crack 

growth. J. Mech. Phys. Solids 40(3), 699-719. 
Goldsmith, W. and Katsamanis, F. (1979). Fracture of notched polymeric beams due to central impact. Exper- 

imental Mech. 18,235-244. 
Kalthoff, J. F. (1983). On some current problems in experimental fracture mechanics. In Workshop on Dynumic 

Fracture (Edited by W. G. Knauss et al.), pp. 11-35. California Institute of Technology. 
Kalthoff, J. F., Beinert, J. and Winkler, S. (1978). Influence of dynamic effects on crack arrest. Institut fir 

Festkiirpermechanik, Tech. Report, August. 
Kalthoff, J. F., Winkler, S. and Beinert, J. (1976). Dynamic stress-intensity factors for arresting cracks in DCB 

specimens. ht. J. Fracture 12, 317-319. 
Katsamanis, F., Raftopoulos, D. and Theocaris, P. S. (1977). Static and dynamic stress intensity factors by the 

method of transmitted caustics. J. Engng Muter. Tech. 99, 105-109. 
Kobayashi, T. and Dally, J. W. (1980). Dynamic photo-elastic determination of the ci-K relation for the 4340 

steel. In Crack Arrest Methodology and Applications (Edited by G. T. Hahn and M. F. Kanninen), ASTM STP 
711, pp. 189-210. 

Kobayashi, A. S. and Mall, S. (1978). Dynamic fracture toughness of homalite 100. Exp. Mech. 18, 11-18. 
Krishnaswamy, S. and Rosakis. A. J. (1991). On the extent of dominance of asymptotic elastodynamic crack-tip 

fields : Part I-An experimental study using bifocal caustics. J. Appl. Mech. 58(l), 87-94. 
Krishnaswamy, S., Tippur, H. V. and Rosakis, A. J. (1992). Measurement of transient crack tip deformation 

fields using the method of coherent gradient sensing. Caltech Report SM 90-l. J. Mech. Phys. Solids 40(2), 
339-372. 

Manogg, P. (1964). Anwendungen der Schattenoptik zur Untersuchung des Zerreissvorgags von Platten. Dis- 
sertationsschrift an der Universitlt Freiburg, Germany. 

Nigam, H. and Shukla, A. (1988). Comparison of the techniques of transmitted caustics and photoelasticity as 
applied to fracture. Experimental Mech. X%(2), 123-133. 

Ravi-Chandar, K. and Knauss, W. G. (1984). An experimental investigation into the mechanics of dynamic 
fracture : I. Crack initiation and arrest. Znt. J. Fracture 25,247-262. 

Rosakis, A. J. (1980). Analysis of the optical method of caustics for dynamic crack propagation. Engng Fract. 
Mech. 13,331-347. 

Rosakis, A. J. (1992). Two optical techniques sensitive to gradients of optical path difference : The method of 
caustics and the coherent gradient sensor (C.G.S.). In Experimenta/ Techniques in Fracture (Edited by J. 
Eptein), Vol. III. 

Rosakis, A. J., D&y, J. and Freund, L. B. (1984). The determination of dynamic fracture toughness of AISI 
4340 steel by the shadow spot method. J. Mech. Phys. Solids 32,443-460. 

Rosakis, A. J., Krishnaswamy, S. and Tippur, H. V. (1990). On the application of the optical method of caustics 
of the investigation of transient elastodynamic crack problems: Limitations of the classical interpretation. 
Optics Lasers Engng 13, 183-210. 

Rosakis, A. J., Liu, C. and Freund, L. B. (1991). A note on the asymptotic stress field of a non-uniformly 
propagating dynamic crack. Znt. J. Fracture 50, R39R45. 

Rosakis, A. J. and Ravi-Chandar, K. (1986). On crack-tip stress state: An experimental evaluation of three- 
dimensional effects. Int. J. Solids Structures 22(2), 121-134. 

Rosakis, A. J. and Zehnder, A. T. (1985). On the method of caustics: An exact analysis based on geometrical 
optics. J. Elasticity 15(4), 347-368. 

Schardin, H. (1959). Velocity effects in fracture. In Fracture (Edited by B. L. Averback et al.). John Wiley and 
Sons, New York. 

Takahashi, K. and Arakawa, K. (1987). Dependence of crack acceleration on the dynamic stress-intensity factor 
in polymers. Experimenfal Mech. 27(2), 195-199. 

Theocaris, P. S. (1970). Local yielding around a crack tip in plexiglass. J. Appl. Mech. 37,409415. 
Theocaris, P. S. (1971). Reflected shadow method for the study of constrained zones in cracked plates. Appl. 

Optics 10,2240-2247. 
Theocaris, P. S. (1981). Elastic stress intensity factors evaluated by caustics. In Mechanics of Fracture (Edited by 

G. C. Sih), Vol. VII, pp. 253-280. Martinus Nijhoff, The Hague. 
Theocaris, P. S. (1978). Dynamic propagation and arrest measurements by the method of caustics on overlapping 

skew-parallel cracks. Int. J. Solids Structures 14,639653. 
Theocaris, P. S. and Gdoutos, E. E. (1974). The modified Dugdale-Barenblatt model adapted to various fracture 

configurations in metals. Inr. J. Fracture 10,549-564. 
Yang, W. and Freund, L. B. (1985). Transverse shear effects for through cracks in an elastic plates. Inf. J. Soiia!s 

Structures 21(9), 977-994. 
Zehnder, A. T. and Rosakis, A. J. (1990). Dynamic fracture initiation and propagation in 4340 steel under impact 

loading. Int. J. Fracture 43(4), 271-285. 


