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SUMMARY 

This work applies the specialization of the integral identities used in the boundary element method to  the 
numerical solution of three-dimensional elasticity problems involving geometries containing two parallel 
planar surfaces (see Part I this issue). Two three-dimensional problems are numerically analysed by using the 
above procedure. These are the problems of pressurized circular and elliptical holes in infinite plates of 
uniform thickness. For the circular hole problem, the accuracy of our scheme is established by direct 
comparison of our results with the available analytical solution. For the ellipse problem, with an aspect ratio 
of 4: 1,  the boundary element results are compared with those of a finite element calculation. 

1. INTRODUCTION 

In a wide range of engineering applications, two-dimensional idealizations of three-dimensional 
problems have been considered acceptable mainly for two reasons: (i) the modelling is, in many 
cases, conservative compared to its three-dimensional counterparts, and (ii) three-dimensional 
geometries are more complex from a computational point of view. However, in three-dimensional 
problems exhibiting high gradients of stress and strain fields, two-dimensional idealizations are 
often inadequate. 

Finite element solutions applied to the modelling of the above-mentioned problems have been 
extensively reviewed in the literature; see, for example, References 1-3. 

One of the key issues in the application of finite elements to problems exhibiting high gradients 
of stress and strain is the choice of the number and size of the elements used in the region where 
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these high gradients appear. Thus, if small elements are used in the modelling of this region, the 
finite element approach, although extremely versatile, may require models with a very high 
number of degree of freedom. Another approach based on the use of special elements suitable for 
approximating high gradients of functions has been extensively used in order to  reduce the 
number of elements in the models. Both approaches are now widely known and are referenced in 
most finite element books. 

The boundary element method (BEM) developed in a similar way. The publications by 
Cruse4-12 on the use of this technique for high stress concentration problems and on the effect of 
increasing the level of discretization are well known. Moreover, the studies of Weaver,” 
Blandford et a l l4  and Luchi and Poggialini” on the use of special elements followed equivalent 
developments in finite elements. 

At this stage, the great advantage provided by the boundary element technique in reducing the 
dimensionality of the problem by one makes it very attractive for the analysis of three- 
dimensional geometries. Although this advantage is greatly reduced by the fact that the technique 
is only applicable in potential theory, the possibility of using different fundamental solutions (e.g. 
Kelvin or Mindlin solutions) broadens the scope. In particular, one recalls the importance of 
using the solution obtained by Mindlin for a three-dimensional semi-infinite space for analysing 
problems involving a single infinite planar surface. Along the same lines, other fundamental 
solutions may be useful in the analysis of other classes of problems. The problem of obtaining 
specialized Green’s functions for the solution of specific problems has received considerable 
attention since the work done by Kelvin. 

In  1985 and 1987, Benitez and R ~ s a k i s ’ ~ *  l7  published the three-dimensional elastostatic 
fundamental solution for a point load in an infinite elastic layer. The basic idea of using this 
fundamental solution in a boundary element scheme was presented by the same authors in 
1988.’’ 

In Part I of this investigation we present the complete development of this idea. This includes 
a detailed derivation of the modified integral identities appropriate for the analysis of three- 
dimensional problems in geometries involving two parallel planar surfaces. It also contains 
details of the numerical implementation of the new scheme and the fundamental solution as well 
as a basic error analysis. 

In Part I1 of this investigation we present the first applications of this approach to the analysis 
of two three-dimensional elastostatic problems. These problems involve pressurized circular and 
elliptical holes in plates of uniform finite thickness. The two examples are used to establish the 
accuracy of the proposed scheme. A more detailed study can be found in Lu.’” 

2. CIRCULAR HOLE SUBJECTED TO INTERNAL PRESSURE 

The problem involves a circular hole in an infinite plate of uniform thickness subjected to uniform 
internal pressure applied on the surface of the hole. Furthermore, the upper and the lower 
surfaces of the plate are traction free. Although this testing problem is a fully three-dimensional 
one, its solution happens to coincide with both the plane-strain and plane-stress solutions for the 
corresponding two-dimensional problems with the same in-plane geometry and loading. By 
taking advantage of this fact, we use this known solution as a benchmark case for comparison 
with our three-dimensional BEM computations. Further comparison is provided by a (FEM) 
calculation. Once agreement between theory and numerics is demonstrated in this simple case, 
the solution of a more complex three-dimensional problem will be attempted. 
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2. I .  Analytical solution 

Consider the problem of a pressurized circular hole (surface L , )  of radius a in an infinite plate 
of uniform thickness h. The upper and lower surfaces (Il I and n,) of the plate are traction free. 
Figure 1 shows the problem schematically. 

By denoting the tractions as t(x, n), where x = re, + Beo + x3e3  and n = n,er + flee, + n3e3 ,  
the boundary conditions become 

t(x, e 3 )  = 0, V x ~ n ,  

t(x, - e 3 )  = 0, V X E I I ~  (1) 

t(x, - e , )  = -per, V X E  L, p > 0 

where p is the magnitude of the applied pressure and vectors e,, e,, e3 are the unit vectors of the 
cylindrical co-ordinate system. 

The in-plane stress field corresponding to the plane-strain and plane-stress approximation of 
this three-dimensional problem are given in Reference 20 as follows: 

UZ 
G @ ~ ( V ,  0) = -Grr(r, 0) = - 

V r B a  V O < B < 2 n  (2) 
r z  ”) or0 (r ,  6) == 0, 

From the former expressions and the constitutive law, 

The above equations imply that, for both the plane-strain and plane-stress idealizations, 
Eji(rr 6 )  and ~ ~ ~ ( r ,  19) are zero simultaneously. 

Figure 1 .  Pressurized circular hole in an infinite plate 
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In addition, the displacement fields for both cases are identical and given by 

1 a2 

2P r 
ur(r,  19) = - - p 

uJr, 6) = 0 (4) 

u3(r, 0) = 0 

where p and E denote the shear and Young moduli, respectively, for the linear elastic solid. 
The fact that the plane-strain and plane-stress solutions of this three-dimensional problem 

coincide (identical stresses, displacements and strains) suggests the possibility that these 
two-dimensional solutions may also be the solution of the fully three-dimensional problem. 
Indeed, if the above solution, expressions (2)-(4), are substituted in the three-dimensional 
governing equations for linear elastostatics, these equations are satisfied identically. Further- 
more, the uniqueness theorem of linear elastostatics guarantees that (2)-(4) furnish the only 
solution of the three-dimensional problem satisfying the given boundary conditions (1). In 
addition, the boundary conditions given by expression ( 1 )  on the surfaces of the plate ll, and L ,  
are trivially satisfied. 

2.2. Modelling of the circular hole surface and boundary element mesh 

In order to compute tractions and displacements at the boundary, the boundary integral 
equation given by expression (45) in Part 1 has to be evaluated. 

As long as the upper and lower surfaces of the plate are traction-free, only the lateral surfaces 
need to be discretized. The lateral surface is the surface of the hole L ,  . This is the key difference 
between the modified boundary element scheme and the conventional one, which employs the 
Kelvin solution as the fundamental solution. 

Two mesh schemes are employed for the modified boundary element scheme, in which 160 and 
640 elements are used. 

Call the dimension of an element in the x3 direction the element thickness and the correspond- 
ing dimension in the circular direction the width. All the elements used have the same width, and 
the elements in a layer have the same thickness. 

In general, the circular hole is modelled by flat rectangular elements of the same width. The 
thickness direction of the hole is modelled by five and ten layers of elements for the 160-element 
and 640-element meshes, respectively. 

When constant elements are used, the node of each element is located at  its centroid. The 
displacement and traction are computed only at the element centroid. 

In the numerical computation of the fundamental solution for the three-dimensional infinite 
layer, as stated in paragraph 5.2 of Part I, the pre-set number P is chosen to be 10 or 20. For 
justification of this choice, see the error analysis section of Part I of this investigation. 

Two groups (A and B) of internal points are placed in the interior of the plate. The 51 internal 
points in Group A are selected to examine the displacement variation along the radius direction; 
the 15 internal points in Group B are required to observe the displacement variation through the 
thickness. 

The points in Group A are placed in three radial arrays at  different depths inside the plate. All 
the arrays contain the same number of points (17 points each), and the points in the three arrays 
have the same radial positions. The first and second array of points are placed in planes 1 and 25 
per cent of the thickness from the top surface of the plate, respectively, and the third array is 
placed in the mid-plane of the plate. Since the displacement field is expected to exhibit a higher 
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gradient with respect to r near the surface of the hole, the points in each array are placed closer to 
each other when they are near the circular hole surface, and further apart when they are away 
from the hole surface. The positions of the points in the r direction are: 

r = a + 0.01h, a + a + 0,1012, a + 020h 

a + 0.30h, a + 040h, a + 0.50h, a + 0.6012 

u + 0.70h, a + 0.80h, a + 0-90h, u + 1.00h 

a + 1.10h, u + 1-20h, a + 1.30h, u + 1.40h 

a + 1.50h 

where h stands for the plate thickness, and a stands for the radius of the hole, chosen to be 
a = 1.00h. 

The points in Group B are positioned along a line through the thickness of the plate. On this 
lline, the displacement is evaluated at 15 points. The position of the line is r = I.05h. The positions 
i3f the points on the line are 

x3 = 0.0012, 0.01 h, 0.05h, 0 1 Oh 

0.20h, 030h,  0.40h, 050h 

060h, 0.70h, 080h, 090h 

0,95h, 0-99h, 1.00h 

The cross section of the circular hole in the first and second mesh arrangement is modelled by 
32 and 64 equally sized elements, respectively. In the thickness direction, the hole i s  modelled by 
five and ten layers of elements, the layers having a regular thickness of 0.212 and 0.112, respectively. 

The positions of the Group A points in the x j  direction are x3 = 0.9912, 0.75h and 0.50h. 
The arrangements of the elements and the internal points are sketched in Figure 2 for the 

11150-element mesh. 

Figure 2. 160-element mesh for the hole surface. The elements are distributed in five layers 
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2.3. Results und error analysis 

In this section the numerical results obtained from the boundary element method are plotted 
against the analytical solution. In all the calculations, Young's modulus E and Poisson's ratio 
Y were chosen to be 1 and 0.3, respectively. 

In Figures 3-8, the normalized displacement components u, and uj versus the normalized 
radius r for the points in Group A, and the same displacement components versus the normalized 

1.5 I 

1 

0.5 

0 
0 0.5 1 1.5 2 2.5 

r/h 
Figure 3. Normalized displacement u, versus normalized distance r. Results obtained at a depth of 1 per cent from the top 

surface, x j  = 0 9 9 h  
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Figure 4. Normalized displacement u, versus normalized distance r. Results obtained at a depth of 25 per cent from the 
top surface, x 3  = 0.75h 



3-D ELASTOSTATIC b UNDAMFNTAL SOI.UTION: PART I1 

lm5 5 

n w 
\ r 
Q 0 -  
Y 

3137 

0 0.5 1 1.5 2 2.5 

r/h 
Figurc 5. Normalized displacement id, versus normalized distance r.  Results obtained at the median plane of thc plate, 

x3 = 0.511 

0.02 I I 
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Figure 6. Normalized displacement u3 versus normalized distance r.  Results obtained at a depth of 1 per cent from the top 
surface, x3  = 0.99h 

depths of the points in Group B are shown. The surface of the hole is at r/h = 1 and 

Figures 3-5 show the variations of the displacement component u, as a function of r/h.  These 
points belong to Group A. Each figure is associated with a different cross section of the plate. It is 
shown that the BEM and analytical solutions are virtually indistinguishable. The results show 
that for the 160-element mesh arrangement the displacements obtained when P IS set to 10 and 20 

0 d Xj/h < 1.0. 
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Figure 7. Nor~nalized displacement u3 versus uormaliLed distance r Results obtamed at a depth of 2.5 per cent from the 

top surface, .Y, = 0 7 5 h  
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Figure 8. Normali~ed displacement u3 versus normalized distance r. Results obtained at the median 

xj  = 0.5h 
plane of the plate, 

are virtually on top of each other. At points which are close to the surface of the hole, the solution 
shows deviation between 160- and 640-element meshes, although this deviation is of the order of 
less than 3 per cent. 

Figures 6-8 show the variations of the out-of-plane displacement component as a function of 
normalized distances from the centre of the hole. In this particular case, the three-dimensional 
boundary element solution agrees well with the analytical predictions up to a distance of 
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, 

approximately twice the maximum dimension of the nearest element on the hole surface. This 
error, less than 1 per cent, is due to the discretization coarseness and decreases with decreasing 
element size, as can be inferred from the improvement in the results obtained for the 640-element 
mesh compared to the 160-element mesh. 

Figure 9 shows the variations of the displacement component u, through the plate thickness. 
Figure 10 shows the variations of the displacement component uj  through the plate thickness. 

-0.05 

1.4 I 
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G 1.3 i 

0 0.2 0.4 0.6 0.8 1 

X3/h 

Figure 9. Normalized displacement u, versus normalized depth x3.  Results obtained at a normalized distance of 0.05h 
from the hole surface 

160 ELEMENTS, (P==aO) 
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-2-D SOLUTION 
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Again, very good agreement between the numerical solution and the analytical prediction is 
shown. 

The accuracy of the final result depends on the following two aspects. First, the surface of the 
subject has to be modelled precisely, and second, the numerical integration of the above integrals 
over each patch (element) of the modelled surface must be computed accurately. 

Both these aspects leave room for error. One possibility i s  discretization error. which in this 
case includes two major parts: the geometry mismatch caused by using flat elements, and the 
assumption that the displacement and traction are constant over an element. Another possibility 
is the error resulting from the evaluation of the stress and the displacement components of the 
fundamental solution for the three-dimensional infinite layer problem. As shown from the above 
results, a choice of P = 10 seems to be adequate. Preliminary calculations for P = 10 produce 
results that exhibit a maximum deviation from the analytical solution of 1 per cent. 

3. ELLIPTICAL HOLE SUBJECTED TO INTERNAL PRESSURE 

This section considers an elliptical hole in a three-dimensional infinite plate of uniform thickness 
h subjected to uniform internal pressure. The ratio of the major to the minor axis is 4. The upper 
and lower surfaces of the plate are traction free. The geometry and loading of the problem is 
similar to the one shown in Figure 1. In this problem, the displacement and stress field near the 
elliptical hole are expected to be three-dimensional in nature. Unlike the equivalent problem of 
a pressurized circular hole, an analytical solution is not available in three dimensions. 

The available plane-strain or plane-stress approximations to this problem will be used for 
comparison with the numerical BEM and FEM results. The purpose of such a comparison is to 
identify the regions near the hole where three-dimensional effects are dominant. 

3.1. Two-dimcnsiorzul solutions 

Consider the two-dimensional problem of a pressurized elliptical hole in an infinite elastic 
solid. The major and minor axes of the ellipse are denoted by u and b, respectively (see Figure 11). 
The magnitude of the applied pressure is p ,  while p and 1' denote the shear modulus and Poisson's 
ratio of the solid, respectively. 

f X p  

Figure 1 I .  'Two-dimensional pressurized elliptical hole on  an infinite plate 
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On the hole boundary, the tractions are given by 

(5 )  t = -pn, p > 0 on r 
where n is the inward normal to the ellipse. 

The solution of this two-dimensional problem can easily be inferred from the problem of a 
traction-free elliptical hole subjected to remote uniform stress, by superposition; see Reference 20. 

For plane-stress the in-plane displacement field is given in elliptical co-ordinates (5.  y) by 

1 
2p(cos2 u] sinh’ 4 + sin2 g cosh’ 5 )  
x { - AcCsin u] sinh ((cos q sin q sinh’ t + cos y sin q cosh’ () 

+ cos u] cosh ~ ( C O S ’  g cosh 5 sinh 5 - sin’ g cosh t sinh 5 ) ]  - Bccos y sinh ( J  

U l ( S ,  u ] )  = 

3 - v  v - 1  + Ac cos u] sinh 5 + Ac ~ cos 9 cosh ( 
2p(  1 - v )  j l ( 1  + 19) 

1 
2p(cos2 u] sinh’ t + sin’ u] cosh’ 5) 
x { - Ac[cos y cosh ~ ( C O S  q sin g sinh’ 5 + cos u] sin g cosh’ () 

-~ sin y sinh ~ ( C O S ’  u] cosh j‘ sinh 5 - sin’ q cosh (sinh 5)] - Bc sin u] cosh 5 )  

U Z ( 5 ,  Y) = 

1’ - 1 3 -- li , + Ac sin g cosh 5 + Ac -__ sin g sinh < 
2p(1 - v) P ( 1  + $9 (7) 

where 

c stands for half the distance between the foci of the ellipse, and 

x: + x: + c2 + J(x: + x: - e’)’ + 4x22~’ 
a =  

2 

.~ 

Under the plane-stress approximation, the out-of-plane displacement u3 of the original three- 
dimensional problem (elliptical hole in a plate) is non-zero and given by 

(101 
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By using the constitutive law and the fact that 03i = 0 for plane stress, the above becomes 

It should be noted that u 3 ( x I ,  x2,  x3) as predicted by plane-stress is linear in x3. 
In the special case of a circular hole (c -+ 0), 5 --+ cc and q -+ 0 Vx,, x2.  Consequently, equation 

The plane-strain solution for this problem can be trivially obtained from the above expressions 
(1 1) yields uj = 0, as has been shown in the previous section. 

by substituting v by v / ( l  - v). In addition, both 1-:33 and u3 vanish identically. 

3.2. Modelling of the clfiptical hole surfuce und boundury element mesh 

Analogous to the circular hole, expression (45) of Part I has to be evaluated. Since the upper 
and lower surfaces of the plate are traction free, only the lateral surfaces of the elliptical hole need 
to be discretized. 

The Cartesian co-ordinate system for this problem is located in the lower surface of the plate, 
the origin of the co-ordinate system is at the centre of the elliptical hole, the x1 axis is in the 
direction of the major axis of the ellipse, the .x2 axis is in the direction of the minor axis and the x3 
axis is in the thickness direction. 

In this problem the ratio of major to minor axes is 4. Two boundary element meshes, involving 
280 and 336 elements, are used to model the elliptical hole. The elements are constant rectangular, 
and all of them are flat. The displacement and the traction variations over an element are 
assumed to be constant. The cross section of the elliptical hole is modelled by 40 elements with 
different widths. In the case including 336 elements, the mesh for modelling the cross section is 
locally refined. The thickness of the hole is modelled by seven layers of elements. All the elements 
in an element layer have the same thickness. The thicknesses of the layers are 
O l h ,  O-lh,02h,O.2h,Olh and 0. lh  from the bottom to the top of the plate. The pre-set number Pis 
chosen to be 10 for both mesh schemes. 

Four groups (A, B, C and D) of internal points are used to examine the displacement field inside 
the plate. 

Group A contains 45 internal points, and these are equally divided and placed in three arrays at 
different depths along the extension of the major axis of the elliptical hole. The first array contains 
15 points and it is located at a distance x3 = 0.95h from the lower surface, the second array 
contains the same number of points and its depth is 0-75h, and the third array of points is located 
in the mid-plane of the plate. The positions of the points in any array in the x ,  direction are: 

X I  = a + 0.01h, + 003h,  u + 0.05h, u + 0.07h 

a + 0.09h, + 013h, a + 0.23h, a + 033h, 

a + 0.43h, u + 050h, u + 0.70h, u + 0.90h 

u + 1,10h, CL + 1.30h, a + 1.50h 

Group B has 33 internal points, and these points are placed in three lines along the thickness 
direction. The displacements are evaluated at 11 points through the thickness. The lines are 
positioned at x2 = 0 and x1 = 0.51h,073h and 1.6h. The points are equally spaced in each line. 
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The first and the last points at both ends of the lines positioned at x2 = 0 and x1 = 0~51h  are 
located at x3 = 0.03h and 0.97h, respectively, and at x3 = 0 and x3 = 1.011 for the other two lines. 

Croups C and D contain 48 and 22 internal points, respectively. In contrast to the Group 
A and B points, these points are placed along the extension of the minor axis of the elliptical hole. 

Figure 12 shows the model for the 280-element mesh elliptical hole and the arrangement of the 
internal points. 

3.3. Finite element analysis 

The three-dimensional finite element analysis code FEAP has been adopted in the present 
study. FEAP was originally developed by R. J. Taylor24 of U. C. Berkeley and later revised at 
Brown University. The code was made available through the courtesy of Dr. Ravichandran. 

The modelling effort of a three-dimensional problem of a pressurized elliptical hole in an 
infinite plate can be greatly reduced by taking advantage of the symmetry. In the implementation 
of the FEAP, one-eighth of the plate is modelled as depicted in Figure 13. The model is bounded 
by six surfaces: two orthogonal surfaces through the thickness, the top free surface and the 
midplane of the plate, a quarter of the elliptical surface enclosed between the two orthogonal 
:surfaces and a remote surface. 

When the radius of this remote surface is large compared to the radius of the elliptical hole, it 
lean be assumed that stresses and displacements on it are negligible. 

Therefore, in the model of the finite element analysis, the three-dimensional plate is truncated 
il>y a remote concentric circular surface at the radius of 20 times the thickness of the plate, and 
1,raction-free boundary conditions are applied on this remote surface. By analysing the two- 
dimensional plane-stress solution of the pressurized elliptical hole problem when the remote 
tisurface is chosen to be at a radius of about 20 times the thickness, the stress and the displacement 
at  the remote surface are of the order of and 10 ~ ', It is then assumed that the traction-free 
boundary conditions can be applied on the remote surface. The finite element mesh is shown in 
Figures 14 and 15. The mesh is composed 1045 elements with 1440 nodes and 4320 degrees of 
freedom. All the elements are placed evenly in five element layers. The thickness of the layers from 
the midplane to the top of the plate are O l h ,  0.15h, 0.15h, 0.0% and 0.0% 

. .  . .  
. .  . .  . . _  ...... . . . .  

. .  
. .  

. .  
-..._ , ' ' 

. .  

._._ . ' . 
. .  

Fiipre 12. Mesh for the elliptical hole with 280 elements. The elements are distributed in seven layers. The aspect ratio is 4 
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hI 

Figure 13. Model for finite element analysis 

Figure 14. Details of in-plane mesh for finite element analysis. 1045 elements 

7 

R 
a- 

1 
T 

Figure 15 Details of mesh variation through thickness for finite element analysis, 1045 elements 
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Eight noded tri-linear brick elements are used. The displacement in the interior of an clcmcnt is 
evaluated through linearly interpolating the values at the nodcs. The stress and strain compo- 
nents are evaluated at fhe element centroids, which are assumed to be constant within an element. 
The surfaces of the brick elements along the elliptical hole surface have the same geometries as the 
elements used for the 280-boundary-element mesh. It is important to point out that the boundary 
element mesh coincides with the finite element mesh along the surface of the elliptical holc. 

The boundary conditions for thc finitc clcment modcl arc: 

(i) u2 = 0 at the nodal points on the x,-x3 plane; 
(ii) u 1  = 0 at the nodal points on the x2-x3 plane; 

(ii i)  u j  = 0 at the nodal points on the x -x2  plane; 
(iv) r ,  = r 2  = t3  = 0 at the nodal points on the top surface of the plate; 
(v )  spccified traction boundary conditions on the elliptical hole surfacc; 

(vi) traction-free boundary conditions of the truncated cylindrical surface. 

3.4. Results and error analysis 

In this section we present representative numerical results obtained by means of the proposed 
boundary element scheme. The results are compared with those of a finite element calculation 
modelling the same geometry and loading. In addition, all plots contain analytical predictions 
obtained by means of the two-dimensional, plane-stress or  plane-strain solutions of the same 
problem [equations (6), (7) and (1 l)]. 

The reason for including a comparison of the three-dimensional results with two-dimensional 
solutions is to identify the regions at the vicinity of the ellipse tip where three-dimensional effects 
dominate and where the two-dimensional idealizations prove inadequate. 

In the following figures the normalized displacement components u j ,  u2  and u j  are plotted 
versus normalized distances from the ellipse tip, and the thickness variation of the same 
displacement components is also presented. 

. -. - -. - - . 
336 ElMs. 48 ELHTSRAVER. 7 urn 
1045 m. 1440 MOES. 4320 W S .  FEA 

-- 

.Q -5 1.0 1.5 2.0 2.5 

X l j h  

Figure 16. Normalized displacement u1 vcrsus normalized distance x,.  Results obtained a t  a depth of 5 per ccnt from the 
top surface, x1 = 095h 
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The tip of the ellipses is located at xl/h = $0.5, x2 = 0 and 0 < x 3 / h  < 1.0. The elastic 
constants are chosen to be E = 1 and v = 0.3. 

3.4.1. In-plane displacements. The two in-plane displacement components do not exhibit 
strong three-dimensional effects as compared to the out-of-plane displacement. The results of the 
displacement u1 computed at different cross sections of the plate (nodal surface 0.95h, three- 
quarters surface 0.7% and midplane 0.91) along the x, direction are shown in Figures 16-18; the 
results of the displacement u2 evaluated at the same cross sections along the x2 direction are 

.o -5 1.0 1.5 2.0 2.5 

X1 /h  

Figure 17. Normalized displacement u1 versus normalized distance xl. Results obtained at a depth of 25 per cent from the 
top surface, x, = 0.7% 
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Figure 18. Normalized displacement u1 versus normalized distance x I  . Results obtained at a depth of 50 per cent from the 
top surface, x 3  = 0.50h 
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shown in Figures 19-21. The numerical results obtained from both the BEM and the FEM are in 
fairly good agreement. They are situated between the plane-stress and the plane-strain solutions, 
with the plane-stress solution acting as the lower limit of the three-dimensional solutions. 

The BEM results of the displacement u1 along the x1 direction show better agreement with the 
plane-stress solution. Because of the finite thickness of thc plate and the fact that the dimensions 
of the elliptical hole are comparable to the thickness of the plate, the displacements will not be 
close to the plane-strain solution unless it is observed very close to the surface of the elliptical hole 
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Figure 19. Normalized displacement uz versus normalized distance x2. Results obtained at a dcpth of 5 per cent from the 
top surface. xg = 0.9% 
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and near the midplane of the plate. Figures 22 and 23 show the strain E~~ and the stress ratio 
033/[v(all + 0 2 2 ) ]  respectively, along the x1 direction obtained by the FEM. Both figures show 
that the plane-strain conditions cannot be satisfied anywhere along the y 1  direction. 

However, Figure 24 shows that cr33 approaches zero very quickly at about half the plate 
thickness away from the surface of the hole, and it remains zero thereafter. Figures 25 and 26 
show that the stress components oll and oZ2 are independent of x3 when the distance to the 
surface of the hole is larger than about three-quarters of the plate thickness. Therefore, the 
plane-stress conditions are better satisfied and the three-dimensional solution is expected to be 
closer to the plane-stress solution. 
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Figure 22. Normalized strain c j 3  versus normalized distance xI . Results obtained from the FEM analysis 
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Figure 23. Strcss ratio ~ T ~ ~ : ( v ( ( T , ,  + oZ2)) versus normalized distance x I  . Results obtained from the FEM analysis 
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Figure 24. Normaliscd stress r~~~ versus normalized distance x , .  Results obtained from the FEM analysis 

Figures 16-18 show that, as the cross section on which the displacement is computed moves 
towards the midplane of the plate, the displacemcnt u1 along the x1 direction obtained from both 
the BEM and the F-EM approaches the plane-stress solution. At the tips of the ellipse, by close 
observation, the results have a tendency to approach the plane-strain solution. 

In the x2 direction, however, when the displacement u2 is computed. the BEM and FEM results 
or the displacement variations of u2 with respect to x2 get closer to the plane-strain solutions as 
the arrays approach the midplane of the plate. This effect is shown in Figures 19-21. 

Away from the elliptical hole, the three-dimensional solutions of the displacements u 1  and u2 
ale expected to converge to the plane-stress solution. This behaviour is reflected by both the BEM 
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Figure 25. Normalized stress ul I versus normalized distance Y ,  . Result< obtained from the FEM analysis 
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Figure 26. Normalized stress oI2  versus normalized distance x, . Results obtained from the FEM analysis 

and FEM results in Figures 16-26. It also shows clearly that the BEM results of the displacements 
u1 and u2 are in better agreement with the plane-stress solution away from the elliptical hole than 
the FEM results. The figures also show that the plane-strain solutions get closer and closer to the 
plane-stress solution as the distance from the surface of the elliptical hole increases. However, the 
two solutions can never be the same. 

3.4.2. Out-ofplune displacements. Figures 27-30 show the variations of the normalized dis- 
placement u3 with respect to the normalized distances x, and x l .  The agreement between the 
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Figure 27. Normalized displacement u3 versus normalized distance x L .  Rcsults obtained at  a depth of 5 per cent from the 
top surface, x j  = 0.95h 
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Figure 28. Normalized displacement uj versus normalized distance xI , Results obtained at a depth of 25 per cent from the 
top surface, x j  = 0.7% 

proposed BEM and the FEM is excellent. Tt can be seen from Figures 27 and 28 that the deviation 
of the three-dimensional numerical results from the two-dimcnsional plane-stress predictions is 
dramatic. This deviation is noticeable up to a distance of 0.5h from the tip of the ellipse at the 
nodal surface, and 0.4h from the tip of the ellipse at the plane three-quarters of the thickness from 
the lower surface of the plate. This observation is consistent with the analytical, numerical and 
experimental investigations of the three-dimensional effects near a crack obtained by Yang and 
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Figurc 30. Normalizcd displacemcnt u,  versus normalized distance Y ~ .  Results obtained at a dcpth of 25 per cent from the 
top surface, xj = 0.75h. 

Freund,2' Rosakis and Ravi-ChandarZ2 and Narasimhan et aLZ3 As expected, u3 is identically 
zero at the midplane. 

The plane-stress prediction of u3 is false near the surface of the hole in thc sense that it 
overpredicts the out-of-plane displacement u j  . This overprediction of u3 is caused by the 
plane-stress assumption C T ~ ~  = 0. The FEM results in Figure 24 show that c~~~ does not vanish 
near the surface of the hole and it presents the feature of stress concentration near the hole. ,-733 is 
relatively large (a,,/(ph/E) = 1.5) near the midplane of the plate as compared to o'33 near the 
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surface of the plate ( ~ r ~ ~ / ( p h / E )  = 0.8). C T ~ ~  rapidly decreases to almost zero at a distance of half 
the plate thickness. The physical meaning of the three-dimensional results can be explained as 
follows. The applied pressure has the tendency to deform the ellipse towards a circle. The tips of 
the ellipse are stretched by this effect, and thus, the thickness of the plate at the tips of the ellipse 
decreases. In the plane-stress solution, the stress (rj3 is zero; therefore, the two-dimensional 
plane-stress solution will have significantly more out-of-plane displacement, u 3 ,  than the three- 
dimensional solution. In addition, near the tips of the ellipse, ~r~~ has a fairly la.rge positive value, 
which reduces the displacement u3 more significantly near the surface of the hole than elsewhere. 
This is the reason that a magnitude decrease in the displacement u3 is present near the surface of 
the elliptical hole. This feature does not appear in the pressurized circular problem because of the 
two-dimensional nature of the problem, in which the actual stress c~~~ is identically zero. 

Figure 29 displays the normalized u3 versus normalized x2, and some discrepancy between the 
proposed BEM and the FEM is noticeable. This discrepancy is due to the use of large elements on 
the flatter sides of the ellipse. After local mesh refinement, the result with 336 elements in Figure 
29 shows much improvement. It will be shown in a later discussion that in the x2 direction the 
thickness variation u3 also improves very significantly after local mesh refinement. It  is expected 
that the BEM results will converge to the FEM results after further refinement of the meshes for 
both methods. 

The three-dimensional effect in the x2 direction near the surface of the elliptical hole is confined 
to within a distance of 0.31~ at the nodal plane, and to within a distance of 0.25h at the plane 
three-quarters of the thickness from the lower surface of the plate. u j  is identically zero at the 
midplane of the plate. 

3.4.3. Through-thickness displacements. The thickness variations of the displacement u1 along 
the x1 direction are shown in Figures 31 and 32. Again, the numerical solutions fall in between the 
plane-stress and the plane-strain solutions. Two features are worth mentioning. (ij The thickness 
variations of the numerical results are no longer horizontal straight lines. This feature indicates 
the three-dimensional nature of the problem. (iij It can be seen from Figures 31 and 32 that the 

.o -2  .4 .6 .8 I .o 
X3/h 

Figure 31. Normalized displacement u, versus normalized distance xj .  Results obtained through !he plate thickness at 
.XI = 051h. ~2 = 0.00 
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Figure 32. Normalized displacement u 1  versus normahzed distance x j .  Results obtaincd through the plate thickness at 
I, = 1-60h, X Z  = 0.00 

numerical solutions approach the plane-stress solutions as the distance to the surface of the hole 
increases. It can also be seen from these figures that the BEM results converge to the plane-stress 
solutions better than the FEM results as the distance to the surface of the hole increases. In Figure 
32, the scale for the vertical axis is changed in order to explore the detailed features of the 
thickness variation of u1 relativeiy far away from the elliptical hole surface. 

Some interesting features are presented in the thickness variations of the displacement u2 in the 
direction x3. It can be seen from Figure 33 that the displacement u2 obtained by the proposed 
SEM using 280 elements deviates from the FEM result. The deviation is most noticeable when 
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the displacement u2 is computed near both the surface of the hole and the surface of the plate. 
After local mesh refinement, the result improves very significantly compared with the FEM 
results. The two features discussed in the thickness variations of u 1  are also applicable here. The 
apparent slope discontinuities in the BEM solution are due to the use of relatively large elements 
along the flatter sides of the ellipse. 

Figures 33 and 34 also show that the points near the two surfaces of the plate are displaced 
more in the x2 direction than the ones near the midplane of the plate. This phenomenon is due to 
the constraint difference for points in the plate. There is less constraint on the points near the free 
surface of the plate than on those near the midplane of the plate. It is easier for a point near the 
surface of the plate to deform in the x3 direction than one near the midplane. Because of Poisson’s 
effect, the points near the surfaces of the plate are displaced more in the x 2  direction than those 
near the midplane of the plate. The above argument can be applied to explain why at the tips of 
the ellipse the displacement u I  is less near the free surface than near the midplane. 

The most interesting feature lies in the thickness variation of u 3 .  As shown here, the out- 
of-plane displacement is strongly influenced by three-dimensional effects. The thickness vari- 
ations of u3 at different distances from the tip of the ellipse along the x1 direction are shown in 
Figures 35 and 36. The thickness variations of uj along the x2 direction are shown in Figures 37 
and 38. The numerical results of the thickness variations from the proposed BEM agree perfectly 
with those from the FEM. 

Figure 35 shows that, at points close to the tip (O.Olh), uj  varies fairly uniformly through the 
thickness and deviates from zero only when the points are close to the plate surfaces. u3 varies 
antisymmetrically with respect to the midplane. The BEM and FEM results are in perfect 
agreement. Figure 36 shows that the three-dimensional results of the thickness variations of u3 
approach the plane-stress solution, which is linear in .x3 as the distance to the surface of the 
elliptical hole increases (see (1 1)). On these plots, the solid line represents the plane-stress solution 
for u 3 ,  equation (ll), which is linearly dependent on x j .  J t  can also be seen that the three- 
dimensional results fall on top of the plane-stress solution at a distance of about half the plate 
thickness away from the elliptical hole surface. 
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€?sure 34. Normalized displacement u2 versus normalized distance .xj. Results obtained through the plate thickness at 
X j  = 0.00, x2 = 169h  
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Figure 35. Normalized displacement u j  versus normalized distance x 3 .  Results obtained through the platc thickness at 
.XI = 0.51h, .x2 : 0.00 
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Figure 36. Normalized displacement u3 versus normalized distance x3. Results obtained through the plate thickness at 
X I  = 1.00h, Y 2  = 0~00 

Because of the use of large elements on the flatter sides of the ellipse in the mesh with 280 
elements, u3 in Figure 37 obtained by the proposed BEM shows some deviation from the FEM 
result when u3 is computed near the surfaces of the plate. By local mesh refinement and the use of 
336 elements in the mesh, u3 improves very much and is almost the same as the FEM result. There 
is very little three-dimensional effect present in the x2 direction. The numerical results quickly 
converge to the plane-stress solution in this case. 

As the distance from the ellipse tip is increased (Figure 38) the three-dimensional numerical 
variation approaches the plane-stress idealization. Indeed Figure 36 clearly shows that the 
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Figure 37. Normalizcd displacement u3 versus normalized distance x 3 .  Rcsults obtained through the platc thickness at 
X I  = 0.00, .x2 = @15h 
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Figure 35. Normalized displacement u3 versus normalized distance xj. Rcsults obtained through thc plate thickness at 
x1 = 0.00, x2 = 160h 

three-dimensional solution is well approximated by equation (1 1 ) obtained from the plane-stress 
idealization (linear variation through the thickness). At even greater distances, complete two- 
dimensional conditions (no variation through the thickness) are achieved. 

4. CQNCLUSlONS 

In this part of the investigation we present numerical examples which demonstrate the applic- 
abilty of the modified boundary element formulation (see Part I) to the solution of elastostatic 
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problems involving plate geometries. The accuracy of the procedure is demonstrated by direct 
comparison with the available analytical solutions. The procedure is also used to quantify the 
extent of three-dimensional effects at the vicinity of the tips of elliptical holes in plates. 

Two pressurized-hole problems have been studied. The results obtained from both the BEM 
and the FEM are in very good agreement. One very interesting aspect is that the BEM gives 
better results in u1 and u2 when they are obtained relatively far from the surface of the hole as 
compared to the thickness of the plate. Away from the elliptical hole, the results of both the BEM 
and the FEM converge to the plane-stress solution, and the results of the BEM agree with the 
plane-stress solution better than those of the FEM. 

It is very important to note that local mesh refincrnent improves the results considerably. Local 
mesh refinement on the flatter sides of the ellipse does not have much effect on the results near the 
tips. This observation makes it possible to use relatively large elements on the Ratter sides of the 
ellipse and refine the elements near the tips without changing the total number of elements. 

The study of these problems shows that u1 and u2 do not differ from the plane-stress and 
plane-strain solutions as much as u 3 .  The variations of u ,  with respect to x1 agree better with the 
plane-stress solution than with the plane-strain solution. In the region near the surface of the hole 
(0.31 < x1 < h), the results for u1 differ from both the plane-stress and the plane-strain solutions 
due to the three-dimensional effects. However, on the flatter sides of the ellipse, the variations of 
ti2 with respect to x 2  agree better with the plane-stress solution when they are evaluated near the 
surfaces of the plate. On the other hand, u2 thickness variations approach the plane-strain 
solution when they are computed closer to  the midplane of the plate. When the displacements u1 
and u2 are computed far away from the surface of the elliptical hole, in both problems the BEM 
results demonstrate better agreement with the plane-stress solution than the FEM results. 

The numerical results obtained by the BEM and the FEM show that the u j  versus x1 variations 
for both problems are almost the same except in the region within about 0.2h from the surface of 
the hole. The sizes of the three-dimensional zones show almost no difference for the two problems. 
In the x,-direction, the three-dimensional zone at a depth of 0.95h is about 0.5h, and the 
three-dimensional zone size is about 0.4h at a depth of 0.7%. On the other hand, in the 
x,-direction, the sizes of the three-dimensional zones are about 0.31 at a depth of 0.9% and about 
0.25h at a depth of 0.75fi. 
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