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ABSTRACT 

The method of Coherent Gradient Sensing (CGS) is used to record the deformation field around an 
adiabatic shear band emanating from a pre-crack tip in C-300 steel loaded dynamically in mode II. At 
early times after impact, the resulting fringe pattern surrounding the shear band seems to exhibit the 
deformation characteristics of a mode II Dugdale plastic zone evolving under small-scale yielding conditions 
and, as a result, the experimental fringe patterns are fitted to the theoretical Dugdale crack deformation 
field by using a least squares fitting scheme. This results in values for the shear band length and the average 
shear stress acting on the shear band as functions of time. The shear band is observed to initiate when 
Kdl(t) = 140 MPax/m and subsequently propagate with an average speed of 320 m s-L The average shear 
stress on the shear band decreases from 1.6 GPa at initiation to 1.3 GPa during the later stages of 
propagation. 

1. INTRODUCTION 

The formation of adiabatic shear bands has recently received renewed attention 
following the experimental measurements of the temperature rise in such bands 
by Duffy (1984). In the past 10 years these measurements have helped motivate a 
considerable amount o f  modeling of adiabatic shear band growth which has recently 
appeared in the open literature. Without presenting an extensive review, it is helpful 
to recall some of the salient and common features of the many models that have been 
made available. 

Commonly, the formation or growth of an adiabatic shear band is modeled as the 
competition between thermal softening and strain and/or strain-rate hardening of a 
material under shear loading. Usually an approximate model of thermal softening is 
added to the constitutive equation for a material, the temperature is treated as an 
additional unknown and the heat conduction equation is added to the field equations. 
Invariably, the heat conduction equation contains a term that links plastic defor- 
mation of the material to the production of heat [see Mason et  al. (1992b)] and a 
temperature rise in the material is predicted as a result of the deformation. The net 
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Fig. h (a) The loading geometry observed by Kalthoff (1987) and Kalthoff and Winkler (1987) to generate 
shear bands in C-300 steel at a pre-notch or pre-crack tip. (b) The modified pre-notched geometry used in 

the present investigation. 

effect of  the assumptions of the model is the introduction of a mathematical mech- 
anism by which instabilities in the deformation can be formed. When thermal soften- 
ing is dominant over strain and/or strain-rate hardening, the material deforms, heats 
and becomes softer resulting in more deformation and the generation of more heat 
which further softens the material producing a "self-feeding" mechanism by which 
an instability is formed. The purpose of this work is to examine the deformation field 
around an adiabatic shear band as it forms and, hopefully, extract more information 
about the shear band formation process itself. 

Kalthoff (1987) and Kalthoff and Winkler (1987) have observed the formation of  
adiabatic shear bands at the tip of dynamically loaded, stationary, pre-manufactured 
notches in plates made of high strength maraging steel. The pre-manufactured notches 
were loaded dynamically in nearly pure mode II loading conditions by an asymmetric 
impact in the area between the two pre-notches on the edge of  the plate [see Fig. 
1 (a)]. When sufficient impact velocity was used, an adiabatic shear band was formed 
directly ahead of the pre-notch, as shown schematically in the figure. In the work 
described here, a similar configuration is used. This configuration involves the 
dynamic asymmetric loading of only one  pre-notch and is schematically shown in Fig. 
1 (b). The use of only one pre-notch provides a simple loading geometry by which one 
may observe the formation of  adiabatic shear bands. 

The method of Coherent Gradient Sensing (CGS) (Tippur et  al. ,  1989a, b ; Rosakis, 
1993a) is used here in reflection on pre-notched steel plates loaded dynamically in 
mode II as described above. It is important to note that CGS has never before been 
used in a reflection arrangement to study mixed-mode crack tip deformations such as 
these. However, it has been used successfully in t r a n s m i s s i o n  and re f l ec t ion  for the 
study of  mode I dynamic crack growth (Tippur e t  al . ,  1989a, b ; Krishnaswamy e t  al . ,  
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1992) and for the study of asymmetric impact induced crack initiation in pre-notched 
PMMA plates (Mason et al., 1992a). 

It is proposed here that the shear band formation at a dynamically loaded mode II 
pre-notch may be modeled by the Dugdale strip yield model. In such a model the 
shear band is assumed to be a one-dimensional line of yielded material evolving 
directly ahead of the stationary pre-notch or pre-crack with a uniform shear stress 
acting upon it. Implicit in this approach to modeling are a number of assumptions 
about the mechanisms of the nucleation and growth of adiabatic shear bands. For 
example, the following assumptions are made : the width of the shear band is assumed 
negligible ; the shear band is assumed to grow straight ahead of the pre-notch or pre- 
crack ; the shear stress is not allowed to vary over the length of the shear band ; the 
effects of inertia are neglected in the interpretation of optical patterns ; and the length 
of the shear band is determined by the far field K~i(t) that is acting on the pre-notch 
(small-scale yielding is implied and the magnitude of the shear stress on the yielded 
zone is chosen to nullify the highest order stress singularity at the shear band tip). 

The last of these assumptions is perhaps the most restrictive, however it is useful 
because it gives a relation between the stress intensity factor, the shear stress on the 
yield zone and the length of the yield zone. In addition it is also motivated by numerical 
investigations of dynamic shear band growth (Lee, 1990) where no singularity is 
found to exist at the growing shear band tip. For a pure K~(t) field with a Dugdale 
zone having a spatially uniform shear stress, Zo(t), acting on it, the length of the yield 
zone, R(t), is given by Rice (1968) : 

~ ( g I l ( t ) ~  
R(t) = -~ \ Vo(t) l" (1) 

Although the assumptions and approximations of the model are somewhat limiting, 
the model is used here as a first attempt at analyzing the results and it should be 
emphasized that the quantitative conclusions are reported asfirst estimates. 

2. EXPERIMENTAL PROCEDURE 

2.1. The method of CGS 

A schematic of the CGS setup is shown in Fig. 3. A coherent, collimated laser 
beam, 50 mm in diameter, is reflected from a highly polished and initially flat surface 
of a pre-notched opaque specimen. After the specimen is deformed, the nonuniform 
contraction at the vicinity of the pre-notch (or better the resulting shear band) causes 
the initially parallel bundle of light to deviate from parallelism after reflection. This 
is equivalent to acquiring an optical path difference due to the additional distance 
traveled by the initially planar wavefront in regions of the specimen where out of 
plane displacements occur. After reflecting from the deformed specimen, the beam 
impinges on the first of two identical diffraction gratings (40 lines/mm). The primary 
grating splits the beam into a direct beam and numerous diffraction orders. For the 
sake of brevity, only the first diffraction orders (+1)  and the direct beam are 
considered. The second diffraction grating diffracts both the direct beam and the first 
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Fig. 2. Schematic describing the working principle of  CGS. 

diffraction orders into three beams each, giving a total of nine beams behind the 
second grating. Of these nine beams the (0, + 1) and the (___ 1,0) orders are parallel--  
as can be seen in Fig. 2. 

An on-line spatial filter is used to isolate one of  the two pairs of  parallel beams. A 
lens is placed a distance equal to its focal length behind the secondary grating as in 
Fig. 3. The Fourier Transform of the intensity distribution at the second grating is 
observed in the back-focal plane of  the lens where an aperture is placed on either the 
+ 1 or - 1 diffraction order spot. The aperture filters all but the two desired parallel 
beams from the wavefront. Another lens is placed at a distance equal to its focal 
length behind the aperture to invert the Fourier transformation. 

It is assumed that the wave front before the first grating is approximately planar 
with some phase difference, S(Xl, x2). This phase difference is introduced because of 
the out of plane deformations on the specimen surface. Deviations of the propagation 
direction from the optical axis are neglected. Thus, the two gratings shift one beam 
with respect to the other by a distance 

e = A tan 0 ~ A0, (2) 

where A is the separation between the gratings (see Fig. 3) and 0 is the angle of  
diffraction (assumed small), given here by 

0 = sin-1 2 2 
P P (3) 

2 is the wavelength of the illumination and p is the pitch of  the gratings. 
The two parallel, sheared wavefronts constructively interfere at a point if their 

difference in phase is an integer multiple of  the wavelength, i.e. if 

S(Xl +~, x2 ) -S ( x l ,  x2) = m2, (4a) 

where m is called "the fringe order." Dividing this equation by ~ gives 
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Fig. 3. Schematic of the experimental set up for reflection CGS. 

S(xl +e, Xz ) -S (x l , x2 )  m2 
- , ( 4 b )  

which, for sufficiently small 2, may be approximated by 

O(S(xl, x2)) mp 
- ( 5 )  

Ox~ A"  

In (5), the approximations in (2) and (3) have been used and the result has been 
generalized to include shearing in either the xl or x2 direction, c~ = l, 2. 

Equations (4a) and (4b) are the standard equations for lateral shearing inter- 
ferometry found in Murty (1978). Note that as e goes to zero the approximation in 
(5) grows more exact, but at the same time the number of fringes and therefore the 
sensitivity of the system is decreased. It is important that the grating separation, 
A, and consequently the value of e appropriately balance the competition between 
maximizing sensitivity and approximating the derivative. 

For an opaque material reflecting the incident laser light, the phase difference, 
S(xl, x2), in (5), is given by the difference in optical path length. This change is wholly 
attributed to changes in specimen thickness due to lateral contraction and, thus, the 
optical path difference is given by (Tippur et al., 1989a, b; Rosakis, 1993a) 

0"33 X 3 S(Xl,X2)=2hfl/2833dC~)=2hf£/2{(tTll+t722)I1 y(O. 11 ~ 0.22)]} d (Lh--), (6) 



1684 J.J. MASON et al. 
where h is the thickness and the factor of 2 accounts for the light traveling the surface 
displacement twice, once on the way in and once on the way out. The integral 
represents the optical path difference due to changes in the plate thickness caused by 
the strain component, e33. 

Assuming the material is isotropic and linearly elastic and using the plane stress 
assumption, a33/v(a, + a22) << 1, (6) may be integrated giving the following result: 

vh 
u3 = - ~ ( # , ~  +#2z), (7) 

where the term in brackets in (6) has been neglected for plane stress conditions and 
all and #22 are plane stress thickness averages of stress components in the material 
while #33 = 0. Hence, inserting (7) into (6) gives 

vh 
s(xl,x~) ~ 2u3 = - - ~  ( a l ,  +#22 ) .  (8) 

Finally, substituting (8) into (5) gives the result 

au3 vh (~(#11 + # 2 2 )  ,'~ mp 
2 Ox~ = E Ox~ ~ -~ .  (9) 

All interference images produced by the CGS apparatus in this work are interpreted 
using (9). Notice that a rigid body rotation does not affect the results since the 
derivative of u3 of such a motion results in a constant that has no effect upon fringe 
pattern formation. The method of using an incident beam at a small angle to the 
undeformed surface normal is made possible by this result. Angling the incident 
illumination is identical to a rigid body rotation. This fact precludes the need for a 
beam splitter in the setup of CGS for use in reflection on opaque materials. In the 
experiments reported here the specimens were illuminated at a small angle to the 
undeformed surface normal. 

For the case of a semi-infinite mode II Dugdale crack with a yield zone of length 
R (t) the solution for the elastic stresses around the yield zone may be found (Rice, 
1968) : 

O" 1 l ( / )  -ll- #22 ( / )  4 % ( t ) I m [ t a n - l ( / R ( t )  ~ l  -- ~ \ ~ / z - - R ( t ) ] J '  (10) 

where to(t) is the shear stress on the yield zone and z = x~ + ix2 is a complex number. 
Taking the derivative of this function gives 

O{611(t)-k-~22(/)} 2%( 0 [1 / R(t) 1 
OXl -- ~ Im ~lz--R(t)J' 

[1 Xl/z-R(t)jR(t) 1 (11) 8{#L,(t)+#22(t)} = _ 2%(t) Re 
8 X  2 ~'  " 

Inserting this result in the governing equation for the CGS apparatus, (9), results in 
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Fig. 4. (a) Numerical predictions of CGS fringes (constant [0(#11-~-t~22)]/£3XI values) constructed on the 
basis of a pure Kidi field with a Dugdale shear zone of length R ahead of the pre-crack tip. (b) Predictions 

of CGS fringes for constant [~9(~-,1 + 822)]/t3x: values and the same assumptions as (a). 

an equa t ion  for  the f o r m a t i o n  o f  fringes a r o u n d  a semi-infinite m o d e  II  Dugda le  
crack.  This  equa t ion  has been solved here numer ica l ly  for  pa r t i a l  d i f ferent ia t ion in 
bo th  direct ions,  x, or  x2, and  the results  m a y  be seen in Fig.  4. The  theore t ica l  fringes 
have been ca lcu la ted  for  interference over  a range o f  wavelengths  near  the exact  
so lu t ion  to give them finite width  as would  be seen in exper iments .  F o r  very large 
dis tances  (when c o m p a r e d  to the Dugda l e  zone size) away  f rom the p re -c rack  tip the 
fringe pa t t e rn  resembles  the pa t t e rn  for  a pure  mode  II  K - d o m i n a n t  field. [See the 
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Fig. 5. Specimen geometry, loading configuration and material constants.  

fringe patterns in Mason et al. (1992a).] Also, when partial differentiation with respect 
to x~ is performed the fringe pattern gives a clear indication of  the location of  
both the original pre-crack tip and the tip of  the Dugdale zone. For  this reason all 
experiments reported here are performed with differentiation parallel to the pre-crack 
tip, i.e. differentiation with respect to Xl; and quick estimates of the Dugdale zone 
size are made by measuring the distance between the point where the rear lobe 
converges to the Xl axis and the point where the front lobes converge to the x~ axis. 

2.2. Apparatus 

The exact specimen geometry is shown in Fig. 5. Specimens are made of  C-300 
maraging steel. Impact of  the specimens is achieved using an air gun and a 75 mm 
long, 50 mm diameter projectile made of C-350 maraging steel. Two types of  test were 
performed: first, round tip pre-notches ,,~0.5 mm thick machined by wire EDM as 
per the figure were impact loaded; and second, pre-cracks approximately 10 mm in 
length grown at the tip of a 50 mm long, 0.5 mm thick pre-notch by loading the 
specimen in dynamic shear were impact loaded. 
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Set up of the CGS apparatus follows Fig. 3. A high-speed framing camera manu- 
factured by Cordin Co. (Salt Lake City, UT) is used as the imaging system. The CGS 
interferograms are generated using an argon-ion laser synchronized with the high- 
speed camera and pulsed for 50 ns at 1.4/ts intervals as the light source. The total 
length of the record of the event is ~ 110 /~s resulting in approximately 80 CGS 
interferograms per test. 

The fringe patterns are digitized by hand. A ray of constant angle ~b from the Xl 
axis is followed; points at the center of fringes are digitized along the way. The 
effective crack tip was chosen by estimating the point where the rear lobe converged 
to the x~ axis ; see Fig. 4(a). Most of the uncertainty in digitization arises from locating 
the effective crack tip and choosing the center of the fringe. 

2.3. Data reduction 

Deviation of experimental results from the fringe patterns predicted by a mode II 
Dugdale crack field are expected for many reasons. These include the existence of a 
zone around the pre-notch tip where plane stress assumptions break down (the three- 
dimensional zone) (Rosakis and Ravi-Chandar, 1986; Krishnaswamy et al., 1988), 
the interference of propagating waves from the loading with the crack tip field and 
violation of the assumptions used in the derivation of the mode II Dugdale model. 
Consequently, the results are analyzed by fittin9 the Dugdale crack solution to the 
digitized fringes of the experiment by a least squares fitting scheme. Digitization is 
carried out only on the points above the pre-crack line (impact occurs on the side of 
the specimen below the pre-crack line) in order to avoid confusion caused by the 
interaction between the Dugdale zone pattern and the pattern generated by the 
propagating waves. The fit is produced by minimizing the error function 

N 

Z(z0, R) = ~ (mi-f(ri, 0i)) 2, (12) 
i = 1  

where 

and 

A vh ~(01~ +Ozz) 
f(ri, 0i) = - (12a) 

p E Ox~ 

r ,  

0i= tan- ' (x~-~). (12b) 

The expression for the partial derivative in (12) is given by (11) and N is the total 
number of points. The minimization of (12) was performed numerically. First, the 
dynamic stress intensity factor was taken from the solution of Lee and Freund (1990). 
When the solution of Lee and Freund (1990) is no longer applicable, at longer times, 
a fit of the results in Mason et al. (1992a) for long times is used. This is justified by 
the agreement between the model and the experimentally measured Kfi(t) for PMMA 
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loaded under the same conditions as demonstrated in Mason et al. (1992a). Then the 
function ;~ was minimized numerically with respect to the shear stress T0(t) while 
holding the stress intensity factor constant. 

3. RESULTS AND DISCUSSION 

As a first investigation of  the shear band formation, lines were etched on the steel, 
and it was impacted at 40 m s-X. The resulting deformation can be seen in Fig. 6. The 
shear band zone width is small, 200-300/~m, and the average shear strain in the band 
is roughly 100%. Note that the deformation is mostly elastic outside the shear band 
and that the etched lines above and below the shear band are still aligned as they were 
before the deformation. This fact indicates that during the shear band formation the 
lower, impacted plane of  material is compressed elastically moving the lower half of 
the etched lines to the right while the upper plane of  material remains approximately 
stationary with the shear band absorbing the resultant mismatch deformation. After 
a crack forms along the shear band elastic unloading occurs allowing the lines to 
realign. This observation justifies the use of an elastic constitutive equation in the 
Dugdale crack model to predict the material deformation around the forming adia- 
batic shear band in future experiments. 

Primary tests were performed on pre-notched specimens. In spite of some of the 
shortcomings of the tests, the results have some merit because the initiation and 
propagation of a shear band was seen in the photos and a change of  failure propa- 
gation mode occurs at later times. A photograph of  the specimen after an experiment 
is shown in Fig. 7. The initial failure growth directly ahead of  the pre-notch tip is a 
shear band dominated failure growth. No shear lips are observed and the failure 
surface is relatively smooth and shiny resembling that reported by Kalthoff (1987) 
and Kalthoff and Winkler (1987) for shear failure. This growth is observed in the 
recorded fringe patterns (not shown) and, in agreement with the report of Kalthoff 
(1987) and Kalthoff and Winkler (1987), the growth proceeds at a small negative 
angle, ~ 5 °, to the x~ axis. The shear band growth is found to arrest at approximately 
40/ts after impact of the specimen. This time corresponds roughly to the time required 
for an unloading wave from the rear of the projectile to reach the pre-notch or shear 
band tip. After the shear growth arrested, a different mode of failure is initiated at a 
large positive angle to the shear growth as can be seen in Fig. 7. This growth is mode 
I dominated as evident from the rough fracture surfaces and the shear lips visible in 
Fig. 7(b). Initiation and growth of this latter crack occurs long after the recorded 
loading and, unfortunately, the exact details of this very interesting failure mode 
transition, observed for the first time, are not yet known. 

In Fig. 8 a record of  fringes may be seen for a dynamically loaded stationary pre- 
crack. Time t = 0 corresponds to the time of impact of  the plate edge. Waves generated 
at the time of  impact take approximately 12 /~s to reach the pre-crack and begin 
loading. The deformation has a resemblance to the theoretical fringe pattern shown 
in Fig. 4(a). The "effective" crack tip and zone tip can be located by the fringe pattern 
in the upper half-plane quite easily. However, the arrival of waves from the impact 
event in the lower half-plane considerably complicates the fringe pattern there at 
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Fig. 6. Example of a shear band formed by asymmetric loading of a pre-notch. The lines were etched before 
loading. Shear localization is observed. 
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Fig. 7. Photograph of the crack path taken after dynamic loading. The crack propagates forward parallel 
to the pre-notch in a shear dominated mechanism then arrests. At later times the crack propagates at an 

angle to the pre-notch in a locally symmetric (mode I) mode of failure. 
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Fig. 9. The actual initial crack tip, as indicated, and the "effective" initial crack tip can be seen in this 
photograph.  
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early times during the recorded deformation. Consequently, in order to simplify the 
digitization procedure, only the fringes on the upper half-plane were digitized. It is 
felt that the upper fringes closely resemble the small scale yielding Dugdale zone 
pattern throughout the recorded deformation because extensive interaction of the 
upper fringes with the incoming stress wave is not observed. Note, however, that the 
fringe pattern on the upper half-plane becomes less and less similar to the Dugdale 
pattern as time goes on. At 47 #s deviations between the measured fringe pattern and 
the theoretical pattern become too large to warrant further fitting of the theoretical 
Dugdale deformation field to the experimentally measured deformation field. Fur- 
thermore, the aperture spot (shadow area) forming around the shear zone continues 
to grow making it more and more difficult to record the fringe pattern. 

In Fig. 9 there is an aperture spot around the Dugdale zone and crack tip at longer 
times. It can be seen in Fig. 8, after some analysis, that the pre-crack faces are coming 
into contact. The pre-crack is curved slightly downward and the curved faces are 
being forced together by compressive loads acting in the x~ direction. Consequently, 
the effective crack tip at early times is where the two faces initially come into contact 
and not at the actual initial pre-crack tip. 

Because of  the existence of  the contact zone in this experiment, the shear band 
length, Rsb(t), is defined here as the length of the fit Dugdale zone size, R(t), less the 
contact zone length, Roz(t), which can be measured directly from the photographs. 
Hence, 

Rsb(t) = R ( 0 - - R . ( t ) ,  

where the contact zone length is found by measuring the distance between the zero 
point indicated by the fringe pattern and the initial pre-crack tip and R (t) is produced 
by the fit indicated in (12). The pre-crack faces are in contact at t = 26 #s (cdt/l = 2.3), 
and the Dugdale fringe pattern indicates that the shear zone extends to the initial pre- 
crack tip at that time. Consequently, at time t = 26 #s, Rsb( / )  = 0 and from then on 
a shear band is observed. 

Fits were performed for photographs taken at the times 17-47 #s after impact. 
Photographs taken at earlier times either showed no loading or did not show enough 
loading to warrant a useful fit. An example of one of the fits (performed at 31.5 ps) 
can be found in Fig. 10. In this figure the furthest theoretical dark fringe from the 
notch tip is the 1/2-order fringe with the order increasing by 1/2 inward toward the 
notch tip. The furthest set of data points represents the first order fringe with the order 
increasing by 1/2 inward. Acceptable agreement between the theoretical Dugdale field 
and the experimentally measured field is seen. 

The results of the fit for the shear stress on the shear band, %(0, and for the shear 
band length, Rsb(t), are plotted in Fig. 11. The shear band length increases with time 
and a linear fit of the growth provides an estimate of the shear band growth velocity 
of  320 m s-L. The initiation occurs at approximately 26 ps, cj/ l  = 2.3, well within the 
domain of the Lee and Freund (1990) solution. At this time the stress intensity is 
roughly 140 MPax /~ .  The shear stress increases initially with time from 0.6 to 1.6 
GPa before the shear band initiation. It is assumed that this effect is due to increasing 
load on the pre-crack faces that are already in contact. After the shear band is 
initiated, the shear stress decreases from 1.6 to 1.3 GPa. This type of behavior is 
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Fig. 11. A plot of %(0 and R(O as found from the fitting proccdure in (12). The shear band lcngth is 
compared to the length as cstimated by comparing the fringe patterns in Fig. 8 to the theoretical fringe 

pattern in Fig. 4. 

expected since thermal softening is the acting mechanism by which the shear band 
forms. As the shear band grows it is expected that the shear stress decreases due to 
thermal softening. Recent experiments conducted in the same geometry at Caltech 
indicate temperatures of up to 600°C above ambient at the tip of the propagating 
shear band (Rosakis, 1993b). The value of the shear band length obtained from the 
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Fig. 12. The constitutive behavior of C-300 at various strain rates as measured in compression. High strain 
rate data was measured using a Kolsky bar apparatus as shown in Mason et al. (1992b). 

fit described by (12) is compared to the estimated shear band length. This length is 
estimated from the photographs by comparing the recorded CGS fringe pattern to 
the predicted fringe pattern in Fig. 4 as described in Section 2.1. Acceptable agreement 
is seen. 

For comparison, the constitutive behavior of this material was measured and is 
shown in Fig. 12 for various strain rates. The curves were measured in uniaxial 
compression, but, for ease of comparison, the equivalent shear stress is plotted using 
the von Mises criterion. In high strain rate tests, the formation of shear bands in the 
specimen is observed. The material hardens with strain initially, but at higher strains 
thermal softening becomes dominant and the measured stress decreases with strain. 
This is typical observed behavior for the formation of instabilities in a uniaxial test. 
Examination of the specimens after testing shows unmistakable evidence of shear 
band failure. Plotted with the Kolsky bar data is an estimate of the stress-strain 
behavior of the material within the shear band observed here. An estimate of the 
constitutive behavior of the material within the shear band may be obtained by using 
the reported stress values in Fig. 11 and by estimating the corresponding average 
strains on the shear band. We assume that the relative shear displacements of the 
upper and lower shear band faces decrease linearly from the pre-crack tip to zero at 
the tip of the band (the end of the Dugdale zone). If the shear band also has a fixed 
thickness, tsb, then the average strain is given by 

2 E  zo t sb  " 

This, combined with the known values of the shear stress in Fig. 11, gives a stress- 
strain relationship for the shear band materials which is displayed in Fig. 12 along with 
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the shear response curves obtained from Kolsky bar  experiments. Good  agreement is 
found between the measured local stress-strain behavior of  the shear band and the 
results of  the Kolsky bar tests. 

4. C O N C L U S I O N S  

The formation of  a shear band at the tip of  a pre-crack loaded dynamically in 
mode II  has been recorded using high-speed photography and the method of  CGS to 
examine the stress field around the pre-crack tip. It  is seen that the recorded fringe 
patterns around the pre-crack correspond well with the theoretical pattern for a mode 
II  small scale yielding Dugdale plastic zone model. Consequently, a fit of  the digitized 
experimental fringe field is made to the Dugdale zone solution with the shear stress 
on the shear band as a parameter  varying with time. The remote stress intensity factor 
is assumed to follow the model of  Lee and Freund (1990). The results of  the fits are 
used to extract the time evolution of  the shear stress on the shear band and the length 
of  the shear band with the following results. 

It  is seen that the shear band initiates within the regime of the Lee and Freund 
(1990) solution for this problem. However, it does not initiate at the first loading of  
the pre-notch tip. There is a time delay of  approximately 11 kts after the arrival of  the 
compressive wave at the crack tip, before shear band growth is observed. The shear 
band initiates when K~ = 140 MPax//m. 

The shear band propagates into the material with a speed of roughly 320 m s -1 
while at the same time the shear stress on the shear band decreases from 1.6 GPa  at 
initiation to 1.3 GPa. 
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