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ABSTRACT

Steady!state intersonic interfacial crack growth accounting for crack face contact is analyzed[ The results
clearly predict the essential features of experimental observations based on two di}erent but complementary
optical techniques and high speed photography[ The solution features a large scale contact zone and two
distinct traveling shock waves\ one emanating from the crack tip and the other from the end of the contact
zone[ In addition\ the solution predicts a non!zero energy dissipation rate due to crack face contact[ Þ
0887 Elsevier Science Ltd[ All rights reserved

Keywords ] intersonic crack growth\ bimaterial interface\ crack face contact[

0[ INTRODUCTION

There have been numerous studies on dynamic interfacial fracture in the sub!Rayleigh
regime\ i[e[\ the regime where the interfacial crack tip speed is lower than the Rayleigh
wave speed of each constituent in the bimaterial system "e[g[\ Gol|dstein\ 0856 ^ Willis\
0860\ 0862 ^ Brock and Achenbach\ 0862 ^ Atkinson\ 0866 ^ Wu\ 0880 ^ Yang et al[\
0880 ^ Deng\ 0881 ^ Liu et al[\ 0882#[ Atkinson "0866# claimed that the terminal speed
of an interfacial crack should be the lower of the two Rayleigh wave speeds of
constituents in a bimaterial\ while Willis "0862# argued that the terminal speed should
be slightly larger than the lower Rayleigh wave speed[ However\ Tippur and Rosakis
"0880#\ Liu et al[ "0882#\ Lambros and Rosakis| "0884# recent experimental studies
showed some surprising phenomena in dynamic interfacial fracture[ For a PMMA:
Steel bimaterial\ the interfacial crack tip speed was observed to rapidly approach and
exceed not only the Rayleigh wave speed\ but also the shear wave speed of PMMA[
Motivated by the earliest of these experimental observations\ Yang et al[ "0880#
conducted a steady!state asymptotic analysis of subsonic interfacial crack growth in
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the bimaterial[ One purpose of the analysis was to investigate the limiting behavior
of the crack tip energy release rate as the crack tip speed approaches the lower
Rayleigh wave speed of the bimaterial[ They found that\ unlike crack growth in
homogeneous materials\ this limit remains bounded[ As a result\ it was shown to be
theoretically possible for an interfacial crack tip to exceed this limit\ which\ in fact\
was consistent with experimental results[

These new experimental observations have motivated a series of analytical studies
on the nature of asymptotic _elds near an intersonically propagating interfacial crack
tip[ Yu and Yang "0883# obtained the anti!plane shear "mode III# near!tip _eld for
the crack tip speed between the shear wave speeds of the two constituents\ though
there has never been any experimental evidence of mode III intersonic interfacial
crack growth[ Indeed for the two extreme cases of bimaterials\ i[e[\ when the two
constituents are identical and when one constituent becomes rigid "i[e[\ elastic:rigid
bimaterial system#\ Huang et al[ "0885# established that intersonic anti!plane shear
"mode III# crack propagation is inadmissible[

Motivated by experimental observations for the PMMA:Steel bimaterial under in!
plane deformation conditions\ Liu et al[ "0884#\ Yu and Yang "0884#\ Huang et al[
"0885# investigated the near!tip _elds around an intersonically propagating interfacial
crack tip whose crack faces remain traction!free[ They showed that stresses are
singular not only at the crack tip\ but also on an entire ray propagating with the crack
tip[ This ray\ similar to a shock wave in aerodynamics\ represents a line of strong
discontinuity and has been observed in a series of experimental studies "Liu et al[\
0882 ^ Lambros and Rosakis\ 0884 ^ Singh et al[\ 0886#[

These experiments\ however\ also showed that a relatively large contact zone exists
behind the crack tip[ The contact zone length was between 0[4Ð1 mm[ This is not of
the small scale oscillatory contact type described by Rice "0877# for quasi!static
interfacial fracture[ This _nite contact zone\ propagating with the crack tip\ results
from the shear dominated nature of intersonic interfacial fracture "Lambros and
Rosakis\ 0884 ^ Liu et al[\ 0884#[ Based on an energy consideration\ Lambros and
Rosakis "0884# and Liu et al[ "0884# concluded\ for the PMMA:Steel bimaterial\ that
crack face contact should occur when the interfacial crack tip speed is between
cPMMA

s and z1cPMMA
s \ where cPMMA

s is the shear wave speed of PMMA[ This range of
interfacial crack tip speed is consistent with the observed crack face contact in Liu et
al[|s "0882# and Lambros and Rosakis| "0884# experiments using the optical method
of CGS "coherent gradient sensing#\ and is later con_rmed by photoelasticity exper!
iments "Singh et al[\ 0886#[ Crack face contact and the existence of shock wave type
stress discontinuities traveling with the crack tip have also been observed in the
numerical simulations of Xu and Needleman "0885#[

Finite contact behind the propagating crack tip raises the possibility of two shock
waves being generated at the moving crack tip and at the end of the contact zone[
Indeed\ the most recent experimental observations based on photoelasticity clearly
show the existence of two such shock waves when cracks propagate with a velocity in
the range between cs and z1cs\ where cs is the shear wave speed of the more compliant
constituent[ In addition\ the experiments clearly show that the two shock waves are
equally inclined to the interface and indeed propagate with the same speed for
substantial time periods throughout the experiments "Singh et al[\ 0886#[
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Motivated by the aforementioned experimental and numerical observations\ this
paper presents an investigation of the stress _eld around an intersonically propagating
interfacial crack tip with _nite crack face contact[ This is a generalization of our
previous work on the intersonic bimaterial problem without crack face contact[ The
current work emulates the clear experimental evidence of the crack face contact\ the
appearance of two distinct shock waves\ and provides a means for analyzing the
experimentally obtained fringe patterns[

In Section 1\ the method of analytical continuation is used to establish a general
approach for intersonic interfacial crack growth under in!plane deformation
conditions[ Section 2 presents the asymptotic structure of near!tip _elds with inter!
facial crack face contact\ while Section 3 gives an analytical solution for a _nite
crack face contact zone[ Results of comparison with both CGS and photoelasticity
experiments are presented in Section 4[ Calculations of the energy dissipation rate
associated with crack face contact are given in Section 5[ It should be noted here that
the crack tip energy release rate of all previous intersonic homogeneous as well as
interfacial solutions\ which do not account for crack face contact\ is zero for the entire
intersonic crack tip velocity regime "cs ³ v³ cl\ where cl is the longitudinal wave
speed#[ In the present solution\ the crack tip energy release rate is also zero[ However\
energy dissipated by crack face contact over the _nite contact zone trailing the crack
tip\ as a result\ a non!vanishing\ net\ energy dissipation rate occurs[ This is consistent
with the predictions of non!zero energy dissipation rate in shear!dominated intersonic
crack growth in homogeneous solids by Broberg "0878#[

Since the elastic moduli of steel are almost two orders of magnitudes higher than
those of PMMA\ the deformation and stress _elds are rather similar to those in an
elastic solid bonded to a rigid substrate "Liu et al[\ 0884 ^ Huang et al[\ 0885#[
Furthermore\ Huang et al[ "0885# showed that an elastic:rigid bimaterial system can
capture all characteristic features of a general elastic:elastic bimaterial\ but the solu!
tion of the former is signi_cantly simpler than that of the latter[ Accordingly\ analyses
in the following sections are limited to an elastic:rigid bimaterial system undergoing
plane stress or plane strain deformation[ The solution for a general elastic:elastic
bimaterial can be found in Wang et al[ "0886#[

1[ MODELING OF INTERSONIC INTERFACIAL CRACK GROWTH
WITH CRACK FACE CONTACT

A general formulation for a crack propagating intersonically along an interface
between an elastic solid bonded to a rigid substrate under in!plane "plane strain or
plane stress# deformation is given in this section[ It is the basis for the asymptotic
analysis in Section 2 and the _nite contact zone solution in Section 3[

As shown in Fig[ 0\ the interface between the elastic solid and the rigid substrate
lies in the xl axis[ The crack tip propagates in the positive xl direction at a speed v\
such that\

cs ³ v³ cl "0#

for an intersonic crack growth\ where cs �zm:r and cl �z"k¦0#:"k−0#cs are the
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Fig[ 0[ An interface crack propagating intersonically between an elastic solid and a rigid substrate[ There
is a _nite contact zone of length l at the elastic:rigid interface\ trailing the crack tip[ Two shock waves

emanate from the crack tip and the end of the contact zone[

shear and longitudinal wave speeds\ respectively\ m is the elastic shear modulus\ r is
the mass density\ k�2−3n for plane strain and k�"2−n#:"0¦n# for plane stress\
and n is the Poisson|s ratio[ The in!plane displacements u0 and u1 in the elastic solid
above the interface can be expressed by two displacement potentials f and c as

u0"x0\x1\ t# �
1

1x0

f"x0\x1\ t#¦
1

1x1

c"x0\x1\ t#

u1"x0\x1\ t# �
1

1x1

f"x0\x1\ t#−
1

1x0

c"x0\x1\ t#[ "1#

The strains and stresses can be found in terms of displacement potentials from the
strainÐdisplacement and stressÐstrain relations[ By introducing the moving coordinate
"h0\ h1# �"x0−vt\x1#\ and assuming the crack growth is steady!state\ one _nds that
the equation of motion leads to a Laplace equation for f and a wave equation for c

"Freund\ 0889#\ and they have the general solution "Liu et al[\ 0884#

f"h0\ h1# �Re "F"zl##
c"h0\ h1# �`"h0¦a¼ sh1#7 h1 × 9\ "2#

where Re"=# stands for the real part of a complex argument zl � h0¦ialh1\ F"zl# is an
analytical function of zl in the upper half plane\ h1 − 9\ `"h0¦a¼sh1# is a real function
of its argument\ and al and a¼s are given by



Intersonic crack growth in bimaterial interfaces 1126

al � 00−
v1

c1
l 1

0:1

and a¼ s � 0
v1

c1
s

−01
0:1

[ "3#

Displacements and stresses in the elastic and solid above the interface can be expressed
as

u0 �Re "F?"zl##¦a¼ s`?"h0¦a¼ sh1#

u1 �−al Im "F?"zl##−`?"h0¦a¼ sh1#7 h1 × 9\ "4#

and

s00 �mð"0¦1a1
l ¦a¼1

s # Re "Fý"zl##¦1a¼ s`ý"h0¦a¼ sh1#Ł

s11 �−mð"0−a¼1
s # Re "Fý"zl##¦1a¼ s`ý"h0¦a¼ sh1#Ł

s01 �−mð1al Im "Fý"zl##¦"0−a¼1
s #`ý"h0¦a¼ sh1#Ł

9 h1 × 9\ "5#

where Im "=# stands for the imaginary part of a complex argument[
At the interface "h1 �9¦\ h0 × 9#\ displacements should vanish because the elastic

solid is bonded to a rigid substrate[ This gives

F?¦"h0#¦FÞ?−"h0#¦1a¼ s`?"h0# � 9

al ðF?¦"h0#−FÞ?−"h0#Ł¦1i`?"h0# � 97 h0 × 9\ "6#

where FÞ"zl# �F"z¹l# is an analytic function in the lower half plane of zl\ and superscript
{{¦|| and {{−|| stand for the limits for h1 : 9¦ and h1 : 9−\ respectively[ By eli!
minating `"h0#\ one _nds

"ala¼ s−i#F?¦"h0#−"ala¼ s¦i#FÞ?−"h0# � 9 h0 × 9[ "7#

Based on analytical continuation\ a new analytic function u"z# is introduced

u"z# �"ala¼ s−i#F?"z# Im"z# − 9

u"z# �"ala¼ s¦i#FÞ?"z# Im"z# ³ 97[ "8#

The function u"z# is analytic in the entire plane\ except on the crack face
"h1 �9\ h0 ³ 9#[ For h0 × 9\ the function `"h0# is related to u"z# through Eqs[ "6# and
"8# by

`?"h0# �−
al

0¦a1
l a¼

1
s

u"h0# h0 × 9[ "09#

The above analysis holds for intersonic crack growth along an elastic:rigid interface
under in!plane deformation conditions\ regardless of the boundary conditions on the
crack faces[ For example\ it holds for the traction!free crack face in Liu et al[ "0884#\
as well as for in_nite or _nite contact zone solutions in Sections 2 and 3[ The function
u"z# is the only function to be determined by the boundary conditions on the crack
face[ In the present study\ a linear contact model is adopted such that the shear and
normal stresses within the contact zone are related by

s01 � ls11 h1 � 9¦\ "00#
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where the linear contact coe.cient l is assumed to depend on bimaterial and bond
properties[ In general\ this coe.cient may be a function of sliding velocity as exten!
sively discussed by Perrin et al[ "0884#[ In addition\ recent high rate experiments by
Prakash and Clifton "0881\ 0882# have revealed a strong velocity dependence of the
frictional sliding process[ However\ in the present model\ l has been kept constant
for simplicity[

It should be pointed out at this point that although the linear contact coe.cient l

bears similarity with the friction coe.cient\ they are distinctly di}erent because the
cracked interface is rough and serrated by construction and causes microscale locking
which gives large resistance against interfacial sliding[ This interface locking can be
better understood from the specimen preparation procedure[ Similar to that proposed
by Tippur and Rosakis "0880#\ and PMMA and metal were bonded together via an
adhesive\ which was a commercially available product consisting of two components ]
a Methylmethacrylate monomer "MMA# and a catalyst that can polymerize the
monomer "Lambros and Rosakis\ 0884#[ Each side to be bonded was roughened by
sandblasting with 09Ð19 micron sized glass beads[ The resulting bonding layer was
roughly 099 microns in thickness and the cured adhesive material had the sti}ness
similar to that of PMMA[ The same procedure was also adopted by Singh and Shukla
"0885# in their bimaterial system composed of the Homalite!099 and aluminum[ The
bonding surfaces in both bimaterial systems were sandblasted\ such that the roughness
of bimaterial interfaces would be on the order of 09Ð19 microns[ This arti_cial
roughness produced a mechanical bond between the metal and polymer material
constituents[ A schematic diagram of the roughened interface is shown in Fig[ 1\
where the interface has a sinusoidal pro_le with the distance from peak to valley on
the order of 09 microns and with the wavelength around 29 microns[ As the interface
is subjected to the shear!dominated loads as in intersonic crack propagation\ the
interface prevents the sliding of the material above the interface with respect to the
material below the interface[ This {{interlocking|| mechanism can lead to a large linear
contact coe.cient l "e[g[\ l× 0#[

Because of the existence of a rigid constituent in the bimaterial\ the normal dis!
placement u1 within the contact zone should vanish

u1 � 9 h1 � 9¦[ "01#

The shear traction at the contact face should be resisting the relative sliding on the
crack face[ This gives

−s01v0 ³ 9 h1 � 9¦\ "02#

where −s01 is the shear traction\ and v0 �du0:dt is the particle velocity along the
crack face[

2[ THE STRUCTURE OF NEAR!TIP ASYMPTOTIC FIELD

In this section\ we consider the solution of an intersonic interfacial crack problem
involving semi!in_nite contact[ Alternatively\ this can be thought as the asymptotic
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Fig[ 1[ A schematic diagram of the roughened interface ^ the interface has a sinusoidal pro_le with the
distance from peak to valley on the order of 09 microns and with the wave length around 29 microns[ As
the interface is subjected to the shear!dominated loads as in intersonic crack propagation\ the interface
prevents the sliding of the material above the interface with respect to the material below the interface[

This {{interlocking|| mechanism leads to a large linear contact coe.cient l "e[g[\ l × 0#[

problem corresponding to a case of a _nite contact zone as the distance to crack tip
vanishes[ In the asymptotic analysis\ the crack face contact conditions in "00# and
"01# are used for the entire crack face "h0 ³ 9#[ Accordingly\ the substitution of
displacements and stresses in Eqs[ "4# and "5# into Eqs[ "00# and "01# gives

1al ðFý¦"h0#−FÞý−"h0#Ł¦1i"0−a¼1
s #`ý"h0#

� l"i"0−a¼1
s # ðFý¦"h0#¦FÞý−"h0#Ł¦3a¼ si`ý"h0##7 h0 ³ 9\ "03#

al ðF?¦"h0#−FÞ?−"h0#Ł¦1i`?"h0# � 9 h0 ³ 9[ "04#

By eliminating `"h0#\ one _nds the relation between Fý¦"h0# and FÞý−"h0# for h0 ³ 9[
In terms of the analytic function u"z# in Eq[ "8#\ it can be expressed as

u?¦"h0#−
"ala¼ s−i#"al "0¦a¼1

s #¦lð1ala¼ s¦i"0−a¼1
s #Ł#

"ala¼ s¦i#"al "0¦a¼1
s #¦lð1ala¼ s−i"0−a¼1

s #Ł#
u?−"h0# � 9 h0 ³ 9[ "05#

This constitutes a RiemannÐHilbert problem[ The boundness for displacements near
the crack tip requires u?"z# �O"=z=a# as =z= : 9 for a×−0[ The general solution for
u?"z# is
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u?"z# �
A"z#

zq
\ "06#

where A"z# is an entire function "analytic in the entire plane including the crack face#\
and the power of stress singularity q near the crack tip is given by

q�
0
p

tan−0 6
al "0¦a¼1

s #"0¦la¼ s#

a1
l a¼ s "0¦a¼1

s #¦l"0−a¼1
s ¦1a1

l a¼
1
s #7[ "07#

This exponent depends on the crack tip velocity v\ Poisson|s ratio n\ and the linear
contact coe.cient l[ The power q is real\ so that the near!tip stress _eld is not
oscillatory for a crack tip propagating intersonically along an elastic:rigid interface
with crack face contact[ The power q becomes insensitive to l for =l= × 09\ and is
given by

q�
0
p

tan−0 $
ala¼ s "0¦a¼1

s #

0−a¼1
s ¦1a1

l a¼
1
s %[

The function F"z# can be obtained by substituting Eq[ "06# into Eq[ "8#\ which
yields

F ý"z# �
0

ala¼ s−i
A"z#

zq
Im"z# − 9

FÞ ý"z# �
0

ala¼ s¦i
A"z#

zq
Im"z# ³ 9[ "08#

Therefore\

AÞ"z# �A"z#\ "19#

or in other words\ if the entire analytic function A"z# is expanded into Taylor series
A"z# �S�

n�9 Anz
n\ all coe.cients An "n�9\ 0\ 1\ [ [ [# are real[ The dominant stress

_eld in the asymptotic analysis corresponds to the leading term\ A9\ in the Taylor
expansion of A"z#[ Similar to the Stress Intensity Factor in fracture mechanics\ the
real parameter A9 represents the amplitude of the near!tip asymptotic _eld and
depends on geometry of the bimaterial\ time!varying external loading\ and crack tip
velocity[ It is noted that the asymptotic stress _eld near an intersonic interface crack
tip is governed by a single real parameter\ while the corresponding _eld near a
stationary or sub!Rayleigh interfacial crack tip is governed by a complex stress
intensity factor[

The real function `"h0# can be obtained from "04# for h0 ³ 9[ In conjunction with
Eq[ "09#\ one _nds

`ý"h0# �

F

G

g

G

f

−
al

0¦a1
l a¼

1
s

A9

hq
0

h0 × 9

−al

A9

"−h0#q

cos qp−ala¼ s sin qp

0¦a1
l a¼

1
s

h0 ³ 9

[ "10#
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The asymptotic displacement and stress _elds near the crack tip are given in the
Appendix[ It is observed that stresses are singular not only at the crack tip\ but also
on the entire ray h0¦a¼sh1 �9[ Liu et al[ "0884# have made similar observations in
intersonic interfacial fracture without crack face contact[ This ray of singularity
propagating with the crack tip has been observed in experiments "Singh et al[\ 0886#\
as discussed in detail in Section 4[

The _eld of particle velocity can be obtained from the displacement _eld by
vi �−v 1ui:1h0 "i�0\ 1#\ based on the assumption of steady!state crack growth[ In
particular\ the particle velocity on the contact face is

v0"h0 ³ 9\ h1 � 9# �−vA9 sin qp=h0 =−q[ "11#

The requirement in Eq[ "02# that the shear traction at the contact face is resisting
crack face sliding becomes

mvA1
9

=h0 =1q
a1

l "0¦a¼1
s #1l"0−a¼1

s #"0¦la¼ s#

ða1
l a¼ s "0¦a¼1

s #¦l"0−a¼1
s ¦1a1

l a¼
1
s #Ł1¦ðal "0¦a¼1

s #"0¦la¼ s#Ł1
× 9\ "02?#

which gives the range of admissible linear contact coe.cient l as

Region I cs ³ v³z1cs l× 9

Re`ion II cs ³ v³z1cs l³−0
v1

c1
s

−01
−0:1

Re`ion III z1cs ³ v³ cl −0
v1

c1
s

−01
−0:1

³ l³ 9[ "12#

This domain of admissible l is shown in Fig[ 2 vs the normalized crack tip velocity\
v:cs\ i[e[\ the shaded regions marked by I\ II and III in Fig[ 2[ Lambros and Rosakis
"0884# and Liu et al[ "0884# argued that crack face contact is expected when the crack
tip velocity is between cs and z1cs[ Equation "12# shows that any positive linear
contact coe.cient l is admissible\ as well as relatively large negative l in the range\
=l= × a−0

s "×0#[
It should be pointed out that although the linear contact coe.cient l bears the

similarity with the friction coe.cient\ the negative linear contact coe.cient l cannot
be excluded for intersonic crack propagation[ Once the deformation is in the intersonic
regime\ there are many phenomena that contradict to our physical intuition gained
in the static or subsonic regimes[ For example\ Georgiadis and Barber "0882a\ b#
investigated the steady!state solution for a point load moving intersonically over an
elastic half!plane[ They established that\ when the point load travels in the intersonic
regime but below z1cs\ the normal displacement under the load becomes opposite to
the load direction "the load is pushed up#\ which clearly contradicts to the intuitive
picture for subsonic motion of the load[ Even though it can be shown that the linear
contact coe.cient l must be non!negative for subsonic crack propagation\ it cannot
be concluded at this point that l is non!negative for intersonic crack propagation[
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Fig[ 2[ The range of admissible linear contact coe.cient l vs the normalized crack tip velocity\ v:cs\ for a
plane!stress PMMA:rigid bimaterial system "Poisson|s ratio nPMMA � 9[24#[ Regions I\ II and III correspond

to l × 9\ l ³ −0 and −0 ³ l ³ 9\ respectively[

The physical restriction on l should be that it gives the shear traction at the contact
face resisting the relative sliding on the crack face\ as in Eq[ "02#[

The power of stress singularity q is shown in Fig[ 3"a# vs the normalized crack tip
velocity\ v:cs\ in the range cs ³ v³z1cs for crack face contact "Liu et al[\ 0884#\
where the Poisson|s ratio of PMMA\ n�9[24\ and several positive linear contact
coe.cients l are displayed[ The power of stress singularity is less than 0:1 for the
entire range of crack tip velocity[ As a result\ the energy ~ux into the crack tip
"Freund\ 0861\ 0889# is zero[ This phenomenon has also been observed in intersonic\
shear!dominated fracture in both homogeneous and interface fracture "Freund\ 0868 ^
Broberg\ 0878 ^ Liu et al[\ 0884 ^ Yu and Yang\ 0884 ^ Huang et al[\ 0885#[ However\
the entire energy input from remote _eld is dissipated through the contact zone\ as
discussed in the next section[ It is also observed that the stress singularity near the
crack tip becomes weaker as the resistance against relative sliding increases "i[e[\ with
increasing l#[ All curves coincide at the same point in Fig[ 3"a# when the crack tip
velocity reaches z1cs[ The corresponding power of the crack tip singularity\
q�tan−0 ð"2−k#:"0¦k#Ł0:1:p\ is not only independent of l\ but also identical to Liu
et al[|s "0884# solution which did not account for crack face contact[ Indeed it can be
easily veri_ed that\ at this critical velocity z1cs\ the solution of Liu et al[ "0884#
which predicted interpenetration at lower velocities\ now predicts u1 �9[ The present
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Fig[ 3[ The power of stress singularity q at the crack tip vs the normalized crack tip velocity\ v:cs\ for a
plane!stress PMMA:rigid bimaterial system "Poisson|s ratio nPMMA � 9[24# ] "a# positive linear contact

coe.cients l ^ "b# admissible negative linear contact coe.cients l[
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solution\ which\ in general\ gives non!vanishing tractions in the contact zone at a
lower crack tip velocity\ now features zero tractions at this particular speed[ Therefore\
the transition from the present contact solution to Liu et al[|s _eld could occur
smoothly at v�z1cs ^ the crack tip propagates with crack face contact when
cs ³ v³z1cs ^ the contact disappears and crack face opens once v reaches z1cs[ It
should however be observed that the above scenario does not prove that crack face
contact is impossible above v�z1cs[ Indeed the asymptotic solution features the
undetermined amplitude A9 whose sign will determine whether contact will occur for
v×z1cs[

This critical velocity v�z1cs is consistent with Georgiadis and Barber|s "0882a\
b# steady!state solution for a point load moving intersonically over an elastic half!
plane[ At v�z1cs\ the displacement on the boundary vanishes\ even though a normal
point load is applied at the boundary of the half!plane[ Another interesting feature
of this solution is that when the point load travels below z1cs but above the Rayleigh
wave speed CR the normal displacement under the load becomes opposite to the load
direction "the load is pushed up#\ contradicting the expected intuitive picture which
is true in the sub!Rayleigh motion of the load[ This is indeed consistent with our
general expectation of crack face contact in the cs ³ v³z1cs velocity regime[

The power of stress singularity q is shown in Fig[ 3"b# vs the normalized crack tip
velocity for several admissible negative linear contact coe.cients l[ Within the range
cs ³ v³z1cs\ the power of stress singularity q increases with resistance against
relative sliding l\ which is contradictory to our physical intuition[

3[ FINITE CONTACT ZONE AT THE INTERFACE

The asymptotic analysis in the previous section only holds near the crack tip[ In
order to compare with experimental observations in Liu et al[ "0882#\ Lambros and
Rosakis "0884#\ and Singh et al[ "0886#\ the stress _eld is investigated in this section
for a _nite contact zone trailing an interface crack tip propagating intersonically[ As
shown in Fig[ 0\ the contact zone has a length l at the elastic:rigid interface[ The
contact conditions in Eqs[ "00# and "01# hold within the contact zone\ while a traction!
free condition should be used for the crack face outside the contact zone\ i[e[\

s01 � ls11 and u1 � 9 −l³ h0 ³ 9\ "13#

and

s01 � 9 and s11 � 9 h0 ³−l[ "14#

The contact conditions in Eq[ "13# become identical to those in Eqs[ "03# and "04#
in terms of functions F"=# and `"=#\ except that they hold only for −l³ h0 ³ 9[
Consequently\ Eq[ "05# also holds for −l³ h0 ³ 9[

The substitution of stresses in Eq[ "5# into the traction!free conditions in Eq[ "14#
gives
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"0−a¼1
s #"F ý¦"h0#¦FÞ ý−"h0##¦3a¼ s`ý"h0# � 9

al"Fý¦"h0#−FÞ ý−"h0##¦i"0−a¼1
s #`ý"h0# � 9 7 h0 ³−l[ "15#

The elimination of function `"h0# yields a relation between F¦ and FÞ− outside the
contact zone[ In terms of the function u"z# in Eq[ "8#\ it can be expressed as

u?¦"h0#−
"ala¼ s−i#ð3ala¼ s¦i"0−a¼1

s #1Ł

"ala¼ s¦i#ð3ala¼ s−i"0−a¼1
s #1Ł

u?−"h0# � 9 h0 ³−l[ "16#

Equations "05# " for −l³ h0 ³ 9# and "16# constitute a RiemannÐHilbert problem[
However\ the discontinuity conditions on the crack face are given separately inside
the contact zone as in Eq[ "05# and outside the zone as in Eq[ "16#[ It is observed that
the stress _eld has two singularities\ one at the crack tip governed by Eq[ "05# and the
other at the end of contact zone "h0 �−l\ h1 �9# determined by Eq[ "16#[ The power
of stress singularity at the crack tip should be the same as that in the asymptotic
analysis in the previous section[ The general solution for u?"z# can be expressed as

u?"z# �
B"z#

zq"z¦l#p
\ "17#

where B"z# is an entire function\ the power q represents the singularity at the crack
tip\ and the power p characterizes stress singularity at the end of the contact zone[
Similar to Eq[ "19#\ the entire function B"z# satis_es BÞ"z# �B"z#[ The substitution
of above expression into the discontinuity condition "05# within the contact zone
"−l³ h0 ³ 9# yields the identical solution for power q as in Eq[ "07# because "z¦l#−p

is continuous across the contact zone[ Its substitution into the traction!free condition
in Eq[ "16# gives the solution for q¦p because both z−q and "z¦l#−p are discontinuous
outside the contact zone\

q¦p�
0
p

tan−0 ala¼ s ð3−"0−a¼1
s #1Ł

3a1
l a¼

1
s ¦"0−a¼1

s #1
[ "18#

It is interesting to note that the above expression is independent of the linear contact
coe.cient l\ and is identical to the power of stress singularity in Liu et al[ "0884# for
an intersonically propagating interfacial crack without crack face contact[ This is
because Eq[ "16# also holds on the crack face in Liu et al[ "0884#[ When =z= Ł l\ an
observer is too far away to discern the contact zone\ so that Eq[ "17# degenerates to
Liu et al[|s "0884# _eld without crack face contact[ In other words\ the power of stress
singularity for a crack without crack face contact can be decomposed to two parts\
the power at the crack tip and that at the end of the contact zone[

The power of stress singularity at the end of contact zone can be obtained by
subtracting Eq[ "07# from Eq[ "18#[ This gives

p�
0
p

tan−0 6
al "0−a¼3

s # ð1la¼ s−"0−a¼1
s #Ł

3a1
l a¼ s "0¦a¼1

s #¦lð7a1
l a¼

1
s ¦"0−a¼1

s #2Ł7[ "29#

It depends on the crack tip velocity v\ Poisson|s ratio n\ and the linear contact



Y[ HUANG et al[1135

coe.cient l[ The power p is also real\ so that the stress near the end of contact zone
may be singular "if p is positive# but not oscillatory[

The real function `"h0# can be obtained in terms of function u"h0# from Eqs[ "04#
and "15# for −l³ h0 ³ 9 and h0 ³−l\ respectively[ In conjunction with Eq[ "09# and
continuity of displacements at the end of the contact zone\ one _nds

`?"h0# �

F

G

G

G

G

j

J

G

G

G

G

f

−
al

0¦a1
l a¼

1
s

u"h0# h0 × 9

ial

1 $
u¦"h0#
ala¼ s−i

−
u−"h0#
ala¼ s¦i% −l³ h0 ³ 9

−
0−a¼1

s

3a¼ s $
u¦"h0#
ala¼ s−i

¦
u−"h0#
ala¼ s¦i%

¦0
0−a¼1

s

3a¼ s

¦
ial

1 1
u¦"−l#
ala¼ s−i

¦0
0−a¼1

s

3a¼ s

−
ial

1 1
u−"−l#
ala¼ s¦i

h0 ³−l

"20#

where u"z# is discontinuous across the crack face "h0 ³ 9# and is given explicitly later
in Eq[ "25#[

The function B"z# in Eq[ "17# can be expanded in Taylor series

B"z# � s
�

n�9

Bnz
n\ "21#

where the coe.cients Bn "n�9\ 0\ 1\ [ [ [# are real[ Its leading term B9 corresponds to
a stress _eld

sij �mB9sij"h0\ h1\ q\ p#\ "22#

where sij are functions of positions "h0\ h1# as well as powers of stress singularity q and
p\ and are given in the Appendix[ It is observed that stresses are singular on two
parallel rays\ h0¦a¼sh1 �9 and h0¦a¼sh1 �−l\ starting at the crack tip and at the
end of contact zone\ respectively[ This has been observed in Singh et al[|s "0886#
photoelasticity experiments\ as discussed in detail in the next section[

Although the high order terms in B"z#\ e[g[\ B0z\ B1z
1\ B2z

2\ [ [ [ \ are relatively not
important to stress _eld near the crack tip\ they are crucial to the stress _eld near the
end of contact zone[ This is because these terms and the leading term B9 are on the
same order near z�−l[ It is observed that the stress _eld associated with the real
coe.cient Bn can be simply obtained by changing q to q−n in sij\ and is given by sij

"h0\ h1\ q−n\ p#[ Consequently\ for general B"z#\ the stress _eld becomes an in_nite
series given by

sij �m s
�

n�9

Bnsij"h0\ h1\ q−n\ p#\ "23#

where sij are given in the Appendix[
The displacement can also be obtained analytically and is shown below
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u0 �Re 6
u"h0¦ialh1#

ala¼ s−i 7¦a¼ s`?"h0¦a¼ sh1#\ "24a#

u1 �−alIm 6
u"h0¦ialh1#

ala¼ s−i 7−`?"h0¦a¼ sh1#\ "24b#

where

u"z# � s
�

n�9

Bn g
z

9

jn−q"j¦l#−p dj\ "25#

and `? is given in Eq[ "20#[ The velocity _eld can be found accordingly from the
steady!state condition[ Although the stress\ displacement\ and velocity _elds are
di}erent from those in the asymptotic analysis in the previous section\ it can be
veri_ed that the requirement in Eq[ "02# for the shear traction at the contact face
resisting crack face sliding leads to the identical range of admissible linear contact
coe.cient l given in Eq[ "12#[ This indicates that the range of admissible linear contact
coe.cient l in the contact zone is intrinsic to the bimaterial system and crack tip
speed[

The dependence of the power of stress singularity p at the end of contact zone on
the normalized crack tip velocity\ v:cs\ is shown in Fig[ 4"a# for Poisson|s ratio n�9[24
and several positive linear contact coe.cients l[ The power p is very small\ typically
less than 9[0\ indicating a weaker stress singularity than that at the crack tip[ For
relatively large linear contact coe.cient l\ there is a maximum value of p[ It is noted
that the exponent p can be negative for small l\ resulting in the lack of stress singularity
and vanishing of the second shock wave emanating from the end of the contact zone[

In the event an admissible "Eq[ "02## negative l occurs\ the variation of exponent
p is shown in Fig[ 4"b# vs the crack tip speed[

4[ COMPARISON WITH EXPERIMENTAL OBSERVATIONS

In this section\ we present some qualitative comparisons of synthetically generated
optical fringe patters to their experimental counterparts[

The optical method of Coherent Gradient Sensing "CGS# and the method of
photoelasticity have been used in conjunction with high!speed photography "up to
1\999\999 frames per second# to record near!tip stress _elds of intersonically moving
crack tips in polymer:metal bimaterial systems "Lambros and Rosakis\ 0884 ^ Singh
et al[\ 0886#[ CGS fringes are contours of gradients of the _rst stress invariant "in!
plane stress#\ i[e[ they correspond to contours of equal "s00¦s11#\0 or "s00¦s11#\1

depending on the experimental setup[ Photoelasticity\ on the other hand\ is sensitive
to di}erences of principle stresses\ i[e[\ photoelastic fringes are contours of equal
s0−s1\ where s0 and s1 are the two in!plane principal stresses in plane stress[ For
CGS fringes\ the expression for "s00¦s11#\0 is given by
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Fig[ 4[ The power of stress singularity p at the end of the contact zone vs the normalized crack tip velocity\
v:cs\ for a plane!stress PMMA:rigid bimaterial system "Poisson|s ratio nPMMA � 9[24# ] "a# positive linear

contact coe.cients l ^ "b# admissible negative linear contact coe.cients l[
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"s00¦s11#\0 �−
1m"a1

l ¦a¼1
s #

0¦a1
l a¼1

s

s
�

n�9

Bn r
n−q−0
0 r−p−0

1

= "ala¼ s "q−n#r1 cos ð"q−n¦0#u0¦pu1Ł¦"q−n#r1 sin ð"q−n¦0#u0¦pu1Ł\

¦ala¼ spr0 cos ð"q−n#u0¦"p¦0#u1Ł¦pr0 sin ð"q−n#u0¦"p¦0#u1Ł# "26#

where "r0\ ul# and "r1\ u1# are the scaled polar coordinates in "h0\ a0h1# plane\ centered
at the crack tip and the end of contact zone\ respectively\ and are given by

r0 �zh1
0¦a1

l h
1
1 u0 � tan−0"alh1:h0#\ "27a#

r1 �z"h0¦l#1¦a1
l h

1
1 u1 � tan−0 ðalh1:"h0¦l#Ł[ "27b#

For photoelasticity fringes\ s0−s1 � ð"s00−s11#1¦3s1
01Ł0:1 can be obtained from

Eq[ "23#[
Figures 5"a# and "b# show the comparison between synthetically and experimentally

obtained CGS fringe patterns for a crack tip velocity of v�0299 m:s[ The contact
length cannot be accurately measured from the experimental fringe pattern because
the end of the contact zone is not clearly identi_ed in Fig[ 5"b#[ However\ the contact
zone length l is estimated between 0[4 and 1[9 mm[ The corresponding synthetic
fringes are obtained by choosing the value of v�0299 m:s from experiments and
choosing the contact length l "between 0[4 and 1[9 mm#\ the linear contact coe.cient
l and the amplitude parameters B9\ B0\ [ [ [Bn\ [ [ [ so that a best _t is obtained[ In this
particular comparison only two non!zero amplitude parameters "B9\B0# were _tted\
and l and l are taken as l�09 and l�0[74 mm\ respectively[ As observed from
comparison\ the synthetic fringe pattern clearly exhibits existence of the two distinct
singularities\ one at the crack tip and the other at the end of the contact zone[ This is
shown in the form of two distinct {{circular|| sets of fringes separated by a distance l
along the interface[

The existence of two distinct shock waves\ one emanating from the crack tip and
the other from the end of the contact zone is clearly evident in Figs[ 6"a# and "b#\
where a photoelastic fringe pattern is compared with the theory[ Here the crack tip is
propagating with velocity v�0[1cs as measured in experiments[ The linear contact
coe.cient l is _xed at 09\ and only one non!zero amplitude parameter "B9# is used[
The predicted shock wave corresponding to the crack tip appears stronger than one
emanating from the end of the contact zone[ This re~ects the generally weaker
singularity existing at that location[

5[ ENERGY DISSIPATION RATE AND PROPOSED FRACTURE
CRITERION

General ener`y considerations

One of the peculiar features of intersonic\ shear!dominated crack growth in both
homogeneous and bimaterial systems is the existence of crack tip singularity exponents
that are less than 0:1 for most of the crack tip velocity regime\ and may reach 0:1
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only at z1cs in a homogeneous system[ This phenomenon has been well documented
in a series of investigations "e[g[\ Freund\ 0889 ^ Broberg\ 0878# for homogeneous
systems[ For intersonic crack growth in bimaterial systems\ however\ it is only recently
that equivalent observations were made in relation to traction!free interfacial crack
"Liu et al[\ 0884 ^ Yu and Yang\ 0884\ Huang et al[\ 0885#[ For this particular problem\
the stress singularity exponent was found to remain well below 9[3 for the entire
velocity regime[ The immediate implication of the above observation is that the
corresponding crack tip energy release rate vanishes as long as the singularity exponent
is less than 0:1[

For the case of intersonic bi!lateral slip in homogeneous materials "shear!dominated
intersonic crack growth#\ Broberg "0878# introduced a process zone model of Dug!
daleÐBarenblatt type to remedy the pathology of zero crack tip energy release rate\
when crack tip velocities were di}erent from z1cs[ This provides an energy absorption
mechanism near the crack tip[ Our contact zone model\ although not of the cohesive
zone type\ bears substantial similarity to this work and also provides an alternative
mechanism of energy absorption[ However\ our model is\ in addition\ directly motiv!
ated by experimental observations of large scale crack face contact and the associated
double shock wave creation[ Such shock waves are characteristic of an intersonically
moving contact region and is not expected in classical models of the DugdaleÐ
Barenblatt type[

Direct application of the dynamic J integral and energy ~ux concepts in Freund
"0889# combined with the existence of zero energy release rate at the crack tip provides
the following expression for the net energy ~ow into the entire crack tip:contact zone
region\

J�D¦G\ "28#

where D is the energy dissipation over the contact zone per unit crack length and is
given by

D� g
9

−l

"−s01#
1u
1h0

dh0 at h1 � 9¦\ "39#

while G is the energy release rate at the crack tip and vanishes

G� 9 "30#

By substitution of the general solution in Eqs[ "23# and "24#\ we get

D�

ma1
l "0¦a¼1

s #1l"0−a¼1
s #"0¦la¼ s# g

l

9

$ s
�

n�9

"−0#nBnh
n%

1

h1q"l−h#1p
dh

ða1
l a¼ s "0¦a¼1

s #¦l"0−a¼1
s ¦1a1

l a¼
1
s #Ł1¦ðal "0¦a¼1

s #"0¦la¼ s#Ł1
[ "31#

From the above expression\ one can see that the requirement of non!negative energy
dissipation is equivalent to the requirement that the shear tractions resist crack face
sliding\ see Eq[ "12#[ The dominant\ leading term of the above expression is given by
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Fig[ 5[ Comparison between synthetically and experimentally obtained CGS fringe patterns for a crack tip
velocity of v � 0299 m:s\ cs � 0999 m:s ] "a# synthetically obtained CGS fringe patterns for the plane!stress
PMMA:rigid bimaterial system ^ "b# experimentally obtained CGS fringe patterns "Lambros and Rosakis\

0884# for the PMMA:steel bimaterial system ^ the length of the contact zone is approximately 1 mm[
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Fig[ 6[ Comparison between synthetically and experimentally obtained photoelasticity fringe patterns for
a crack tip velocity of v � 0[1cs ] "a# synthetically obtained photoelasticity fringe patterns for the plane!
stress Homalite:rigid bimaterial system ^ "b# experimentally obtained photoelasticity fringe patterns "Singh
et al[\ 0886# for the Homalite:steel bimaterial system ^ the length of the contact zone is approximately 1

mm[
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D�
B1

9

l1"q¦p#−0
=

ma1
l "0¦a¼1

s #1l"0−a¼1
s #"0¦la¼ s#b"0−1q\ 0−1p#

ða1
l a¼ s "0¦a¼1

s #¦l"0−a¼1
s ¦1a1

l a¼
1
s #Ł1¦ðal "0¦a¼1

s #"0¦la¼ s#Ł1
\ "32#

where

b"a\ b# � g
0

9

xa−0"0−x#b−0 dx "33#

is the b!function\ and B9 is an unknown function of the crack tip velocity\ linear
contact coe.cient\ bimaterial properties\ and external loading[

Critical slidin` displacement failure criterion

In order to further investigate the nature of energy dissipation and energy ~ux\ we
need to introduce an additional postulate "criterion# of dynamic crack growth which
provides additional information regarding the unknown amplitude factor appearing
in Eq[ "32#[ Recent analytical and experimental work on dynamic subsonic interfacial
crack growth has shown that a viable dynamic crack growth criterion for the subsonic
regime can be based on the attainment of constant crack opening and sliding dis!
placements at the end of the crack tip cohesive zone "Fey and Rosakis\ 0886a\ b#[
This work makes use of a dynamic cohesive zone model of DugdaleÐBarenblatt type[
The model is used to interpret subsonic experimental results and to calculate the
critical values of opening and sliding displacements in the entire subsonic regime[
Based on the experimental data\ these critical displacements are found to be time and
velocity invariant[

Motivated by the above subsonic criterion\ and in the absence of opening dis!
placements in the contact zone in the present model\ we postulate here that intersonic
crack growth will take place in the presence of a critical sliding displacement evaluated
at the end of the contact zone\ i[e[\

u0"h0 �−l\ h1 � 9¦# � dc\ "34#

where dc is a time and velocity invariant which depends only on bimaterial and bond
properties[ It should be pointed out that\ although the above postulation is a natural
generalization of the dynamic crack growth criterion for the subsonic regime "Fey
and Rosakis\ 0886a\ b#\ it needs to be veri_ed by experiments[ However\ some
concluding remarks based on this postulation\ as discussed in the following\ will aid
the comparison with future experiments[

The above equation determines the amplitude B9 in terms of the critical sliding
displacement dc\ crack tip velocity v\ linear contact coe.cient l\ and contact length l
as follows\

B9 �−
dcl

p¦q−0

b"0−q\ 0−p# sin qp
[ "35#

Substituting Eq[ "35# into Eq[ "32#\ we obtain



Y[ HUANG et al[1143

D

md1
c :l

�
b"0−1q\ 0−1p#

"sin qp#1 ðb"0−q\ 0−p#Ł1

=
la1

l "0¦a¼1
s #1"0−a¼1

s #"0¦la¼ s#

ða1
l a¼ s "0¦a¼1

s #¦l"0−a¼1
s ¦1a1

l a¼
1
s #Ł1¦ðal "0¦a¼1

s #"0¦la¼ s#Ł1
[ "36#

Its left hand side is the normalized energy dissipation rate\ and its velocity dependence
is plotted in Figs[ 7"aÐc# for three di}erent ranges of admissible linear contact
coe.cient l in Fig[ 2[ Figure 7"a# gives the normalized dissipation rate for positive l[
This corresponds to region I of Fig[ 2 for admissible l[ The energy dissipation rate D
is found to be _nite in the velocity range from cs to z1cs\ provided that l remains
_nite[ Its maximum occurs at cs and monotonically decreases to zero at z1cs[ The
existence of the maximum seems to suggest that there is an energy barrier of _nite
strength at the velocity cs[ This may be consistent with experimental observations
"Liu et al[\ 0882 ^ Lambros and Rosakis\ 0884 ^ Singh et al[\ 0886# that crack seems to
favor growth at v� cs and remain at this speed for a substantial period during the
experiments[ However\ when cracks velocities increase above cs\ they do so in a highly
unstable manner "acceleration on the order of 097 m:s1#[ Indeed\ the unstable crack
growth is consistent with the need of decreasing energy dissipation for higher crack
tip speed "Fig[ 7"a##[

Figure 7b gives the same plot for −�³ l³−0[ This corresponds to the region
II of Fig[ 2 for admissible linear contact coe.cient l[ The main di}erence of this
_gure with Fig[ 7"a# is that\ for each coe.cient l³−0\ there exists a crack tip speed\
v�� ðcs "z0¦"0:l1##Ł\ for which the energy dissipation rate becomes in_nite "see
vertical asymptotes#[ To the left of the asymptote\ stable crack growth is inadmissible
on the basis of Eq[ "02#[ For negative l\ the existence of an in_nite energy barrier
probably precludes the attainment of crack tip speed beyond the vertical asymptote[
However\ experiments have clearly shown crack tip speeds as high as 0[3cs "Lambros
and Rosakis\ 0884#[ Consequently\ the above result implies that either negative
coe.cients l were not present in these experiments\ or that the restriction only holds
for steady!state crack growth[

Figure 7"c# corresponds to the linear contact coe.cient −0³ l³ 9\ region III of
Fig[ 2 for admissible l[ The admissible l in this range all corresponds to crack tip
speed larger than z1cs[ It is conceivable that above z1cs\ contact may still exist\
depending on the external loading which will dictate the sign of the undetermined
coe.cient B9[ However\ if that happens\ the coe.cient l is restricted to be within
region III in Fig[ 2[ If the above conditions are met\ the required energy dissipation
rate increases with velocity "stable crack growth#\ and in certain cases\ becomes
in_nite at v�� ðcs "z0¦"0:l1##Ł for −0³ l³−ð"k−0#:1Ł0:1[ The predicted in_nite
energy barrier then implies the existence of a terminal speed v� given above[ However\
for −ð"k−0#:1Ł0:1 ³ l³ 9\ the energy dissipation rate D remains _nite and the crack
tip speed may exceed the longitudinal wave speed cl of the elastic solid[

It should be emphasized at this point that the present solution is incapable of
predicting the exact nature of intersonic crack growth[ Because of its asymptotic and
steady!state nature "no far _eld boundary conditions are prescribed# it involves
undetermined amplitude constants[ In addition the length\ l\ of the contact zone is
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Fig[ 7[ The normalized energy dissipation rate\ vs the crack tip velocity\ v:cs\ for a plane!stress PMMA:rigid
bimaterial system "Poisson|s ratio nPMMA � 9[24# ] "a# positive admissible linear contact coe.cient l\
corresponding to region I in Fig[ 2 ^ "b# negative admissible l in the range −� ³ l ³ −0\ corresponding
to region II in Fig[ 2 ^ "c# negative admissible l in the range −0 ³ l ³ 9\ corresponding to region III in

Fig[ 2[
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Fig[ 7 Continued[

not by any way restricted to depend on these amplitudes or on the crack tip speed\
and it is intensionally kept arbitrary[ This is a major di}erence to static or dynamic
cohesive zone models where the requirement of zero singularity at the crack tip
produces a relationship between the length of the cohesive zone\ the crack tip speed
and the far!_eld stress intensity factor[ Here we have intensionally refrained from
imposing an equivalent restriction since we felt that the experiments clearly showed
evidence of a non!vanishing crack tip singularity[ The solution also does not provide
conclusive information regarding terminal crack tip speeds[ It only gives indications
of possible acceptable scenarios "admissible regimes of intersonic crack growth which
only weakly restrict the crack tip behavior within the speci_c ranges of admissible
linear contact coe.cients and the requirement of steady state crack growth#[ In
other words it investigates the admissible solution space\ within which many possible
intersonic crack growth scenarios may exist in physical reality[

6[ SUMMARY OF RESULTS

The paper describes an analytical model of intersonic crack propagation along the
interface of an elastic:rigid bimaterial accounting for large scale crack face contact[
The analysis predicts the essential features observed in CGS and photoelasticity
experiments[ These include two distinct velocity dependent singularities at the crack
tip and at the trailing end of the contact region\ as well as the appearance of two
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distinct shock waves emanating from these two points[ Appropriate choice of stress
_eld and contact parameters result in synthetic fringe patterns that compare very
favorably with experimental counterparts[ The solution also allows for the calculation
of the rate of energy dissipation resulting from crack face contact as a function of
crack tip speed\ contact length\ and linear contact coe.cient[ A simple fracture
criterion based on the attainment of critical crack face sliding displacement at the end
of the contact zone is used to investigate the mechanism of energy dissipation at
various intersonic crack tip speeds[
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APPENDIX

The asymptotic _elds near a crack tip

The asymptotic displacement and stress _elds near a crack tip are given by
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where H"=# is the Heaviside step function\ "rl\ ul# are the scaled polar coordinates in "h0\ alh1#
plane\ and are given by
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The functions sij in Eq[ "22# for the _nite contact zone solution

The functions sij in Eq[ "22# for the _nite contact zone solution are given by
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where "r0\ u0# and "r1\ u1# are the scaled polar coordinates in "h0\ alh1# plane\ centered at the
crack tip and the end of contact zone\ respectively\ and are given in Eq[ "27#[


