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Abstract

Recent experiments showed that the speed of a crack tip propagating along a bimaterial interface can
exceed the shear wave speed of the more compliant constituent in the bimaterial. This experimental
observation has motivated analytical and numerical investigation on fast crack growth. Among these
investigations, Huang et al. obtained a simple, analytic full-®eld solution for an elastic/rigid bimaterial
with crack-face contact. Although this solution compares quite favorably with all available experimental
data, it is not clear which bimaterial can be approximated by the elastic/rigid model. In this paper, we
use the method of analytical continuation to obtain the asymptotic stress ®elds near the crack tip and
near the trailing end of the contact zone. It is established that the elastic/rigid model is an excellent
approximation to all bimaterials that have been used in fast crack growth experiments. Therefore, the
simple, analytic solution of elastic/rigid model provides a useful means for analyzing experimental fringe
patterns and data. It is shown that, as the elastic mismatch decreases, the elastic/rigid model may
become invalid. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recent experimental studies of Tippur and Rosakis [9], Liu et al. [6], Lambros and
Rosakis [5] showed some surprising phenomena in dynamic interfacial fracture. For a PMMA/
Steel bimaterial, the interfacial crack tip speed was observed to rapidly approach and exceed
not only the Rayleigh wave speed, but also the shear wave speed of PMMA. This crack tip
speed certainly exceeds Atkinson's [1] claim of terminal speed of an interfacial crack, which is
the lower of the two Rayleigh wave speeds of constituents in a bimaterial. Motivated by the
earliest of these experimental observations, Yang et al. [11] conducted a steady-state asymptotic
analysis of subsonic interfacial crack growth in the bimaterial, and established that, unlike
crack growth in homogeneous materials, the crack tip energy release rate remains bounded as
the crack tip speed approaches the lower Rayleigh wave speed of the bimaterial. As a result, it
was shown to be theoretically possible for an interfacial crack tip to exceed the lower Rayleigh
wave speed, which, in fact, was consistent with experimental results.

Motivated by these new experimental observations, Liu et al. [7], Yu and Yang [12], Huang
et al. [3] investigated the near-tip ®elds around an intersonically propagating interfacial crack
tip whose crack faces remain traction-free. They showed that stresses are singular not only at
the crack tip, but also on an entire ray propagating with the crack tip. This ray, similar to a
shock wave in aerodynamics, represents a line of strong discontinuity and has been observed in
a series of experimental studies [5, 6, 8]. These analytical studies, however, have not taken into
account the e�ect of large crack face contact zone that exists behind the crack tip observed in
experiments using optical method of CGS (coherent gradient sensing) [5] or photoelasticity [8].
This ®nite contact zone is on the order of millimeters [5, 8] and is too large to be neglected.
Crack face contact and the existence of shock wave type stress discontinuities traveling with
the crack tip have also been observed in the numerical simulations of Xu and Needleman [10].

Finite contact behind the crack tip propagating intersonically raises the possibility of two
shock waves being generated at the moving crack tip and at the trailing end of the contact
zone. Indeed, the most recent experimental observations based on photoelasticity clearly show
the existence of two such shock waves that are equally inclined to the interface and propagate
with the same speed for substantial time periods throughout the experiments [8]. Motivated by
the aforementioned experimental and numerical observations, Huang et al. [4] investigated the
stress ®eld around a crack tip propagating intersonically along the interface between an elastic
medium and a rigid substrate. The analysis predicted successfully the essential features
observed in CGS and photoelasticity experiments, including two distinct velocity dependent
singularities at the crack tip and at the trailing end of the contact region, as well as the
appearance of two distinct shock waves emanating from these two points. The reason for
Huang et al. [4] to study the elastic/rigid bimaterial is that, in Lambros and Rosakis' [5]
experiments, the elastic moduli of steel are almost two orders of magnitudes higher than those
of PMMA. Moreover, an analytic full-®eld solution can be obtained for the elastic/rigid
bimaterial, therefore it provides a simple and useful means for analyzing experimentally
obtained fringe patterns and data. However, it should be pointed out the mass density of steel
is almost one order of magnitude higher than that of PMMA such that the mismatch in shear
wave speeds between PMMA and steel are much smaller than the mismatch in elastic moduli.
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Further studies are needed to evaluate whether the elastic/rigid model is a good approximation
to an elastic/elastic bimaterial.
This paper presents an investigation of the asymptotic stress ®elds near an intersonically

propagating interfacial crack tip as well as near the trailing end of the contact zone for an
elastic/elastic bimaterial with crack face contact. It compares with the elastic/rigid model [4] in
order to determine the range of mismatch in elastic moduli and mass densities whereby the
elastic/rigid model is a good approximation. Section 2 provides the general structure of the
solution in each constituent of the bimaterial, while the method of analytic continuation is
used in Sections 3 and 4 to obtain the asymptotic ®elds near the crack tip and near the trailing
end of the contact zone, respectively.

2. Modeling of intersonic crack growth along a bimaterial interface

As shown in Fig. 1, the interface between the two elastic solids lies in the x1 axis. It is
assumed that the upper solid (indicated by superscript ``1'') is more compliant than the lower
solid (indicated by superscript ``2''). The crack tip propagates in the positive x1 direction at a
speed u, such that

c�1�s < u < min c�2�s ; c
�1�
l

h i
�1�

for intersonic crack growth, where c(i)s =
���������������
m�i�=r�i�

p
and c(i)l =

���������������������������������������������k�i� � 1�=�k�i� ÿ 1�c �i�s
p

(i= 1, 2)
are the shear and longitudinal wave speeds of the ith constituent in the bimaterial, respectively,
m (i) is the elastic shear modulus, r (i) is the mass density, k (i)=3ÿ 4n (i) for plane strain and
k (i)=(3ÿ n (i))/(1 + n (i)) for plane stress, and n (i) is the Poisson's ratio. The in-plane
displacements u (i)

1 and u (i)
2 (i= 1, 2) in the elastic solids can be expressed by four displacement

potentials f (i) and c (i) (i= 1, 2) as

Fig. 1. An interface crack propagating intersonically between two elastic solids. There is a ®nite contact zone of
length l at the interface between the two elastic media, trailing the crack tip.
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�i�
1 �x1;x2; t� �

@

@x1
f�i��x1;x2; t� � @

@x2
c�i��x1; x2; t� �2a�

u
�i�
2 �x1;x2; t� �

@

@x2
f�i��x1;x2; t� ÿ @

@x1
c�i��x1; x2; t� �2b�

It is assumed that the crack growth is steady-state, and by introducing the moving coordinate
(Z1, Z2) = (x1ÿut, x2), the equation of motion becomes [2]

f�1�;11�Z1; Z2� �
1

a2l1
f�1�;22�Z1; Z2� � 0

c�1�;11�Z1; Z2� ÿ
1

â2s1
c�1�;22�Z1; Z2� � 0

9>>>>=>>>>; Z2 > 0; �3a�

and

f�2�;11�Z1; Z2� �
1

a2l2
f�2�;22�Z1; Z2� � 0

c�2�;11�Z1; Z2� �
1

a2s2
c�2�;22�Z1; Z2� � 0

9>>>>=>>>>; Z2 < 0; �3b�

where

al1 � 1ÿ u2

c
�1�2
l

 !1
2

�4a�

âs1 � u2

c�1�2s

ÿ 1

 !1
2

�4b�

al2 � 1ÿ u2

c
�2�2
l

 !1
2

�4c�

and

as2 � 1ÿ u2

c�2�2s

 !1
2

�4d�

As discussed in [3], the general solution of Eq. (3) is

f�1��Z1; Z2� � Re F1�zl1�
� 	

c�1��Z1; Z2� � g�Z1 � âs1Z2�

9=; Z2 > 0 �5a�
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and

f�2��Z1; Z2� � Re F2�zl2�
� 	

c�2��Z1; Z2� � Im G2�zs2�
� 	

9=; Z2 < 0 �5b�

where zl1=Z1+ial1Z2, zl2=Z1+ial2Z2 and zs2=Z1+ias2Z2, Re{�} and Im{�} stand for the real
and imaginary parts of a complex argument, respectively, F1(zl1) is an analytical function of zl1
in the upper half plane, Z2r0, g�Z1 � âs1Z2� is a real function of its argument, F2(zl2) and
G2(zs2) are analytical functions of their arguments in the lower half plane, Z2<0.
Displacements and stresses can be expressed as

u
�1�
1 � Re F01�zl1�

� 	� âs1 g 0�Z1 � âs1 Z2�
u
�1�
2 � ÿal1 Im F01�zl1�

� 	ÿ g 0�Z1 � âs1 Z2�

9=; Z2 > 0 �6a�

and

u
�2�
1 � Re F02�zl2� � as2 G02�zs2�

� 	
u
�2�
2 � ÿIm al2 F02�zl2� � G02�zs2�

� 	
9=; Z2 < 0 �6b�

s�1�11 � m�1� �1� 2a2l1 � â2s1�Re F001�zl1�
� 	� 2âs1 g 00�Z1 � âs1Z2�

h i
s�1�22 � ÿm�1� �1ÿ â2s1�Re F001�zl1�

� 	� 2âs1 g 00�Z1 � âs1Z2�
h i

s�1�12 � ÿm�1� 2al1 Im F001�zl1�
� 	� �1ÿ â2s1� g 00�Z1 � âs1Z2�

h i

9>>>>>>>=>>>>>>>;
Z2 > 0 �7a�

and

s�2�11 � m�2�Re �1� 2a2l2 ÿ a2s2�F002�zl2� � 2as2G002�zs2�
n o

s�2�22 � ÿm�2�Re �1� a2s2�F002�zl2� � 2as2 G002�zs2�
n o

s�2�12 � ÿm�2�Im 2al2 F002�zl2� � �1� a2s2�G002�zs2�
n o

9>>>>>>>=>>>>>>>;
Z2 < 0 �7b�

Functions F1, g, F2 and G2 are determined by the continuity of displacements and stresses
across the interface, the traction-free condition on crack faces, and the contact condition
within the contact zone, as discussed in Section 3 for the asymptotic ®eld near the crack tip
and Section 4 for that near the trailing end of the contact zone.
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3. Asymptotic ®eld near the crack tip

At the interface (Z2=0, Z1>0), the continuity of displacements and stresses gives [u1] = 0,
[u2] = 0, [s22] = 0 and [s12] = 0, i.e. for Z1>0,

F0�1 �Z1� � �F0ÿ1 �Z1� � 2âs1 g 0�Z1�
� �F0�2 �Z1� � F0ÿ2 �Z1� � as2

�
�G0�2 �Z1� � G0ÿ2 �Z1�

� �8a�

al1 F0�1 �Z1� ÿ �F0ÿ1 �Z1�
h i

� 2ig 0�Z1�

� al2 F0ÿ2 �Z1� ÿ �F0�2 �Z1�
h i

� G0ÿ2 �Z1� ÿ �G0�2 �Z1� �8b�

m�1�

m�2�
�1ÿ â2s1� F00�1 �Z1� � �F00ÿ1 �Z1�

h i
� 4âs1 g 00�Z1�

n o
� �1� a2s2� F00ÿ2 �Z1� � �F00�2 �Z1�

h i
� 2as2

�
G00ÿ2 �Z1� � �G00�2 �Z1�

� �8c�

and

m�1�

m�2�
�1ÿ â2s1� F00�1 �Z1� � �F00ÿ1 �Z1�

h i
� 4âs1 g 00�Z1�

n o
� 2al2 F00ÿ2 �Z1� ÿ �F00�2 �Z1�

h i
� �1� a2s2�

�
G00ÿ2 �Z1� ÿ �G00�2 �Z1�

� �8d�

where F1(zl1)=F1� �zl1� is an analytic function in the lower half plane of zl1, F2(zl2)=F2� �zl2� and
G2(zs2)=G2� �zs2� are analytical functions in the upper half plane of their corresponding
arguments, and superscripts `` + '' and ``ÿ '' stand for the limits for Z240+ and Z240ÿ,
respectively. By eliminating g(Z1), one ®nds

M

F00�1 �Z1�
�F00�2 �Z1�
�G00�2 �Z1�

266664
377775ÿ �M

�F00ÿ1 �Z1�

F00ÿ2 �Z1�

G00ÿ2 �Z1�

266664
377775 � 0 Z1 > 0 �9�

where

M �

g 2âs1al1 ÿ i�1ÿ â2s1�
h i

2gâs1al2 � i�1� a2s2� 2gâs1 � 2ias2

gal1�1� â2s1� al2 2ÿ g�1ÿ â2s1�
h i

1� â2s2 ÿ g�1ÿ â2s1�

â2s1al1 ÿ i âs1al2 � i âs1 � ias2

2666664
3777775 �10�

and g= m (1) /m (2). Based on analytical continuation, Eq. (9) de®nes the following analytic
function
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~y 0�z� �M

F001�z�
�F002�z�
�G002�z�

26664
37775 Im�z�r0

~y 0�z� � �M

�F001�z�
F002�z�
G002�z�

26664
37775 Im�z� < 0

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
�11�

where ~y 0(z) is analytic in the entire z-plane, except on the crack face (Z2=0, Z1<0).
Because of the existence of a crack face contact zone behind the crack tip, the normal

displacement u2, the normal stress s22 and shear stress s12 within the contact zone should be
continuous, i.e.

�u2� � 0; �s22� � 0; �s12� � 0 for Z1 < 0 Z2 � 0 �12�

They are identical to Eqs. (8b)±(8 d) except that they are imposed on the entire crack face
(Z1<0, Z2=0) in the present asymptotic analysis near the crack tip. The additional boundary
condition comes from the linear contact model [4], where the shear and normal stresses within
the contact zone are related by

s12 � ls22 Z1 < 0 Z2 � 0 �13�

where the contact coe�cient of proportionality l is assumed to depend on bimaterial and bond
properties. Eq. (13) can be written, via the expression of stresses in Eq. (7), as

2al1 F00�1 �Z1� ÿ �F00ÿ1 �Z1�
h i

� 2i�1ÿ â2s1� g 00�Z1�

� l i�1ÿ â2s1� F00�1 �Z1� � �F00ÿ1 �Z1�
h i

� 4âs1ig 00�Z1�
n o

9>>=>>; Z1 < 0 �14�

The elimination of g(Z1) from Eqs. (8b)±(8 d) and Eq. (14) leads to

P

F00�1 �Z1�
�F00�2 �Z1�
�G00�2 �Z1�

266664
377775ÿ �P

�F00ÿ1 �Z1�

F00ÿ2 �Z1�

G00ÿ2 �Z1�

266664
377775 � 0 Z1 < 0 �15�

where
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P �

g 2âs1al1 ÿ i�1ÿ â2s1�
h i

2gâs1al2 � i�1� a2s2� 2gâs1 � 2ias2

gal1�1� â2s1� al2 2ÿ g�1ÿ â2s1�
h i

1� â2s2 ÿ g�1ÿ â2s1�

2lal1â2s1 � al1�1� â2s1� ÿ il�1ÿ â2s1� al2 2lâs1 ÿ �1ÿ â2s1�
h i

2lâs1 ÿ �1ÿ â2s1�

26666664

37777775
�16�

In terms of the analytic function yy 0(z) in Eq. (11), Eq. (15) can be expressed as

PMÿ1~y 0��Z1� ÿ �P �Mÿ1~y 0ÿ�Z1� � 0 Z1 < 0 �17�
Let l1, l2 and l3 be eigenvalues and ~www1, ~www2 and ~www3 be the corresponding orthogonal
eigenvectors for the following auxiliary eigenvalue problem

PMÿ1~wÿ l �P �Mÿ1~w � 0 �18�
which can be easily solved by a numerical method. The function ~yyy 0�z� can be written in terms
of eigenvectors ~wwwi (i= 1,2,3) as

~y 0�z� � y 01�z�~w1 � y 02�z�~w2 � y 03�z�~w3 � ~w1; ~w2; ~w3
ÿ � y 01�z�

y 02�z�

y 03�z�

266664
377775 �19�

where y 0i(z) (i = 1,2,3) are analytic except at the crack face. The substitution of expansion (19)
into Eq. (17) gives

l1y 0�1 �Z1� ÿ y 0ÿ1 �Z1�

l2y 0�2 �Z1� ÿ y 0ÿ2 �Z1�

l3y 0�3 �Z1� ÿ y 0ÿ3 �Z1�

266664
377775 � 0 Z1 < 0 �20�

which constitutes three Riemann±Hilbert problems for y 01(z), y 02(z) and y 03(z), respectively. Their
general solutions are

y 0j�z� � Aj�z�=zqjz j � 1; 2; 3 �21�

where Aj(z) are analytic in the entire z-plane, and qj are the powers of stress singularity near
the crack tip and are given by

qj � 1

2pi
ln lj j � 1; 2; 3 �22�

These powers of stress singularity near the crack tip depend on the crack tip velocity u,
bimaterial properties, as well as the contact coe�cient of proportionality l. In fact, due to
crack face contact, the powers of stress singularity are always real such that there is no
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Fig. 2. The power of stress singularity q at the crack tip versus the normalized crack tip velocity, u/cs, under plane-
stress deformation for several contact coe�cients of proportionality l, where cs is the shear wave speed of the more

compliant constituent in the bimaterial: (a) PMMA/steel bimaterial; (b) Homalite/steel bimaterial; (c) PMMA/
Homalite bimaterial.



oscillatory near-tip ®eld. Without loss of generality, three powers of stress singularity can be
arranged in the order of q1rq2rq3 such that q1 is the most singular power in the near-tip stress
®eld. For all crack tip velocities, bimaterial properties and the contact coe�cients of
proportionality l, our numerical solutions of the eigenvalue problem have shown that q2 and
q3 are identically zero. Therefore, the power of singular near-tip stress ®eld, denoted by q = q1,
is given by

q � 1

2pi
ln
jPj � j �Mj
j �Pj � jMj

 !
�23�

where vv stands for the determinant of a matrix.
Fig. 2a shows the power of stress singularity q at the crack tip versus the normalized crack

tip velocity, u/c PMMA
s , for PMMA/steel bimaterial under plane stress deformation. The contact

coe�cients of proportionality are l = 10, 2, 1, 0.5 and 0, and c PMMA
s is the shear wave speed

of PMMA. This bimaterial was used in Liu et al.'s [6] and Lambros and Rosakis' [5]
experiments, and the material properties are given in Table 1. The curves corresponding to the
PMMA/rigid bimaterial studied by Huang et al. [4] are also shown in Fig. 2a. It is observed
that the PMMA/rigid bimaterial model is an excellent approximation to the PMMA/steel
bimaterial. Therefore it is reasonable for Huang et al. [4] to use the elastic/rigid bimaterial
model, which has a simple, analytic full-®eld solution, to analyze Lambros and Rosakis' [5]
experimentally obtained fringe patterns and data. Another interesting observation is that, for
the PMMA/steel bimaterial, there exists a critical velocity, 1.403c PMMA

s , at which all curves
coincide in Fig. 2a. Similar to the discussion of Huang et al. [4], this speed determines whether
crack faces have contact for the PMMA/steel bimaterial. For crack tip speed less than
1.403c PMMA

s , there is crack face contact. Once the crack tip speed reaches 1.403c PMMA
s , crack

face contact disappears and the power of stress singularity q becomes independent of the
contact coe�cient of proportionality l, as evidenced by all curves for PMMA/steel bimaterial
coincide at the speed of 1.403c PMMA

s . The crack faces remain traction-free as the crack tip
speed exceeds 1.403c PMMA

s .
Fig. 2b shows a similar plot for the Homalite/steel bimaterial, where Homalite was used in

Singh et al.'s [8] experiments, and its material properties can be found in Table 1. Curves
corresponding to the Homalite/rigid bimaterial are also shown. It is con®rmed that the elastic/
rigid model is also an excellent approximation to the Homalite/steel bimaterial. The critical

Table 1

Material properties and wave speeds of selected materials

Shear modulus
m (GPa)

Poisson's
ratio n

Density
r (kg/m3)

Shear wave
speed cs (m/s)

Plane stress
longitudinal
wave speed
c1 (m/s)

PMMA 1.2 0.35 1190 1004 2090
AISI 4340 steel 80.0 0.30 7833 3196 5979
Homalite-100 1.96 0.35 1230 1255 2203
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crack tip speed that governs the crack face contact is 1.399cHomalite
s , where all curves for

Homalite/steel coincide in Fig. 2b.
It should be pointed out, however, that the elastic/rigid model is a good approximation only

to bimaterials that have a relatively large elastic mismatch, such as PMMA/steel and Homalite/
steel. Fig. 2c shows the power of stress singularity q at the crack tip versus the normalized
crack tip velocity, u/c PMMA

s , for PMMA/Homalite bimaterial. Curves corresponding to an
elastic/rigid model are also presented for comparison. It is clearly observed that the two sets of
curves corresponding to elastic/elastic and elastic/rigid models are far apart, because the elastic
modulus of Homalite is only 70% higher than that of PMMA. Accordingly, the elastic/rigid
model is not applicable.

4. Asymptotic ®eld near the trailing end of the contact zone

The asymptotic ®eld near the trailing end of the contact zone is investigated in this section
for a crack propagation intersonically along a bimaterial interface. A local coordinate system
(z1, z2) centered at the trailing end of the contact zone is used, where (z1, z2) is related to the
coordinate (Z1, Z2) centered at the propagating crack tip by z1=Z1+l, z2=Z2, and l is the
length of the contact zone. It is noted that z1>0 and z1<0 correspond to the contact zone and
traction-free crack face, respectively.
The contact conditions in Eqs. (12) and (13) still hold except that Zi(i= 1,2) are replaced by

zi(i = 1,2) and Z1<0 is replaced by z1>0. Accordingly, Eq. (15) also holds in the contact zone,
i.e.

P

F00�1 �z1�
�F00�2 �z1�
�G00�2 �z1�

266664
377775ÿ �P

�F00ÿ1 �z1�

F00ÿ2 �z1�

G00ÿ2 �z1�

266664
377775 � 0 z1 > 0 �24�

where the matrix P is given in Eq. (16). Based on analytical continuation, Eq. (24) de®nes the
following analytic function ~YYY 0(zÄ)

~Y 0� ~z� � P

F 001� ~z�
�F 002� �z�
�G002� ~z�

26664
37775 Im� �z�r0

~Y 0� ~z� � �P

�F 001� ~z�
F 002� ~z�
G002� ~z�

26664
37775 Im� ~z� < 0

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
�25�

where zÄ=z1+iz2 and ~YYY 0(zÄ) is analytic in the entire zÄ-plane, except on the traction-free crack
face (z2=0, z1<0).
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The traction-free boundary conditions on the crack face outside the contact zone give

s�1�12 � 0 �26a�

s�1�22 � 0 �26b�

s�2�12 � 0 �26c�

s�2�22 � 0 �26d�
and

z1 < 0 �26e�
The substitution of stresses in Eq. (7) into the above traction-free conditions and elimination of
function g give [3, 4]

Q

F00�1 �z1�
�F00�2 �z1�
�G00�2 �z1�

266664
377775ÿ �Q

�F00ÿ1 �z1�

F00ÿ2 �z1�

G00ÿ2 �z1�

266664
377775 � 0 z1 < 0 �27�

where

Q �

4âs1al1 ÿ i�1ÿ â2s1�2 0 0

0 ÿi�1� a2s2� ÿ2ias2

0 2al2 1� a2s2

266664
377775 �28�

In terms of the analytic function YYY 0(zÄ) in Eq. (25), Eq. (27) can be expressed as

QPÿ1 ~Y 0��z1� ÿ �Q �Pÿ1 ~Y 0ÿ�z1� � 0 z1 < 0 �29�
Let l *

1, l *
2 and l *

3 be eigenvalues and ~www*
1, ~www

*
2 and ~www*

3 be the corresponding orthogonal
eigenvectors for the following auxiliary eigenvalue problem

QPÿ1~w� ÿ l� �Q �Pÿ1~w� � 0 �30�
which can be easily solved by a numerical method. The function ~YYY 0� ~z � is written in terms of
eigenvectors ~www*

i (i = 1,2,3) as

~Y 0� ~z� � ~w�1; ~w
�
2; ~w
�
3

� �
x 01� ~z�; x 02� ~z�; x 03� ~z�
� �T �31�

where x 0i i(zÄ) (i= 1,2,3) are analytic except at the crack face. The substitution of expansion (31)
into Eq. (29) gives
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l�1 x
0�
1 �z1� ÿ x 0ÿ1 �z1�

l�2 x
0�
2 �z1� ÿ x 0ÿ2 �z1�

l�3 x
0�
3 �z1� ÿ x 0ÿ3 �z1�

266664
377775 � 0 z1 < 0 �32�

which constitutes three Riemann±Hilbert problems for x 01(zÄ), x 02(zÄ) and x 03(zÄ), respectively. Their
general solutions are

x 0j� ~z� � Bj� ~z�= ~z pj j � 1; 2; 3 �33�

where Bj(zÄ) are analytic functions in the entire zÄ-plane, and pj are the powers of stress
singularity at the trailing end of contact zone and are given by

pj � 1

2pi
ln l j

� j � 1; 2; 3 �34�

These powers of stress singularity pj depend on the crack tip velocity u, bimaterial properties,
as well as the contact coe�cient of proportionality l. In fact, they are always real and two of
them are identically zero, namely p2=p3=0. Therefore, the non-vanishing power of stress
singularity p = p1 at the trailing end of contact zone is given by

p � 1

2pi
ln
jQj � j �Pj
j �Qj � jPj

 !
�35�

where vv stands for the determinant of a matrix.
From Eqs. (23) and (35), the sum of powers of stress singularity at the crack tip and at the

trailing end of the contact zone, p + q, is given by

p� q � 1

2pi
ln
jQj � j �Mj
j �Qj � jMj

 !
�36�

It is observed that p+ q is independent of the contact coe�cient of proportionality l because
the matrix M is obtained from the continuity conditions across the interface and Q is derived
from the traction-free crack faces, i.e. matrices M and Q do not involve the contact coe�cient
of proportionality l.
Fig. 3a±c shows the power of stress singularity p at the trailing end of the contact zone

versus the normalized crack tip velocity u/c PMMA
s for PMMA/steel, Homalite/steel and

PMMA/Homalite bimaterials, respectively. The corresponding power p estimated from an
elastic/rigid model [4] is also shown for comparison. It is clearly observed that the elastic/rigid
model is an excellent approximation to the PMMA/steel and Homalite/steel bimaterials. All
curves for PMMA/steel in Fig. 3a and for Homalite/steel in Fig. 3b coincide at the same crack
tip speeds as those in Fig. 2a and 2b, 1.403c PMMA

s and 1.399cHomalite
s , respectively. This

con®rms the critical crack tip speed governing the crack face contact. However, curves in
Fig. 3c for PMMA/Homalite are far away from those for an elastic/rigid model because of the
relatively small elastic mismatch.
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Fig. 3. The power of stress singularity p at the trailing end of the contact zone versus the normalized crack tip
velocity, u/cs, under plane-stress deformation for several contact coe�cients of proportionality l, where cs is the
shear wave speed of the more compliant constituent in the bimaterial: (a) PMMA/steel bimaterial; (b) Homalite/

steel bimaterial; (c) PMMA/Homalite bimaterial.



5. Conclusions

The asymptotic ®elds near the crack tip and near the trailing end of the contact zone are
obtained for a crack propagating intersonically along a bimaterial interface with crack face
contact. It is established that, for a bimaterial with relatively large elastic mismatch between its
constituents, an elastic/rigid model is a reasonable approximation for the elastic/elastic
bimaterial, regardless of their mismatch in mass densities. Therefore, for all experiments on
intersonic crack growth that are presently available, e.g. PMMA/steel [5] and Homalite/steel [8],
the elastic/rigid model provides a useful means for analyzing the experimental fringe patterns
and data. The is because the elastic/rigid model gives a simple, analytic full-®eld solution [4],
while no closed-form solutions have been established for the elastic/elastic bimaterial. The
asymptotic analyses near the crack tip and near the trailing end of the contact zone have
con®rmed the existence of a critical crack tip speed below which crack face contact occurs.
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