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Abstract

The dynamic drop-weight test is taken as a convenient basis for assessing the ®delity and predictive ability of
cohesive models of fracture in applications involving dynamic crack growth. In the experimental phase of the study,
coherent gradient sensing (CGS) has been used to study dynamic fracture in C300 maraging steel. The specimens

were subjected to three-point bend impact loading under a drop weight tower. High-speed photographs of the CGS
interferograms were analyzed to determine the crack tip location, the velocity and the dynamic fracture toughness as
a function of time. Post-mortem examination of the specimens revealed the fractography of the fracture surfaces,

including the development of shear lips. In a parallel numerical phase of the study, fracture has been modeled by
recourse to an irreversible cohesive law embedded into cohesive elements. These cohesive elements govern all aspects
of the separation and closure of the incipient cracks. The cohesive behavior of the material is assumed to be rate

independent. The ®nite element model is three dimensional and consists of quadratic ten-noded tetrahedra. The
numerical simulations have proven highly predictive of a number of observed features, including: the crack growth
initiation time; the trajectory of the propagating crack tip; and the formation of shear lips near the lateral surfaces.
The simulations therefore establish the feasibility of using cohesive models of fracture and cohesive elements to

predict dynamic crack-growth initiation and propagation in three dimensions. 7 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

When a mode I crack initiates dynamically, after the satisfaction of an appropriate dynamic crack
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initiation condition (Owen et al., 1998), it grows with a crack tip speed history not predictable by
continuum mechanics alone. To describe the crack tip history, we require the notion of a dynamic crack
growth toughness which would in general be a material-dependent function of a near tip measure of the
local deformation rate. For growing cracks, the dominant contribution to the strain rate near the
propagating crack tip is proportional to the instantaneous crack tip speed. As a result, the dynamic
fracture toughness is expected to be some material-dependent function of the crack tip speed. These
observations suggest a dynamic fracture criterion of the form (e.g. Freund, 1990):

K d
I �a�t�, t, load � � KD�v� �1�

where a(t ) is the time-dependent crack length and v is the crack velocity a
.
(t ). The left-hand side of this

equation, namely, the instantaneous stress intensity factor K d
I , measures the strength of the near-tip

®elds which drive crack propagation. The right-hand side of the equation, called the dynamic fracture
toughness, KD, represents the resistance of the material to crack propagation, with the attendant
dissipative mechanisms, such as surface energy and plasticity, and material inertia subsumed within it.
As implied in Eq. (1), KD is generally supposed to be a function of the crack velocity v. Numerical
analyses by Freund and Douglas (1982) and Lam and Freund (1984) have shown that, for elastic±plastic
materials, material inertia shields the crack tip plasticity for a propagating crack. Correspondingly, for
materials obeying McClintock and Irwin's (1964) fracture criterion, i.e. the attainment of a critical
plastic strain at a ®xed critical distance ahead of the crack tip, the aforementioned numerical analyses
reveal that KD(v ) is an increasing function of v, in keeping with experimental observation. Rosakis and
Zehnder (1985) have shown that this type of analyses are predictive of the variation of KD with v for
appropriately assumed values of certain parameters.

Over the past two decades, considerable experimental e�ort Ð using a variety of techniques Ð has
been devoted to the development of methods to measure KD(v ), and to ascertaining if it indeed is a
material property. In addition to direct optical techniques such as the method of caustics, photoelasticity
and coherent gradient sensing (CGS), certain hybrid methods have also been used for this purpose.
Brickstad (1983) conducted dynamic fracture experiments on a high strength steel where the crack
velocity and boundary displacements were experimentally measured and were used as input to a
numerical analysis to infer the variation of KD(v ). A signi®cant result of this work is that KD(v ) does
not show a discernible dependence on v

.
, i.e. the crack acceleration, which is consistent with experimental

observations (Dally, 1979). Employing an analogous procedure, Kanazawa et al. (1981) obtained an
extensive set of data concerning KD(v ) at various test temperatures for a Si±Mn steel. In addition,
taking advantage of the large size of the specimens, they made use of the data to predict v vs a for a
given boundary loading. The results are in good agreement with experiments. In their procedure, they
made use of Freund's (1972) decomposition of K d

I (a, v ) into a product of functions of a and v alone.
A similar approach was adopted by Angelino (1978) who inferred KD from boundary load and

displacement measurements. Though prone to errors in crack-velocity estimation, this method yielded
KD values for SAE 4340 steel that are in good agreement with those reported by other investigators. A
slightly di�erent methodology was adopted by Bilek (1980), who subjected double cantilever beam
(DCB) specimens made of 4340 steel to wedge loading and measured crack speed and boundary
displacements. This information was used in the numerical solution of an analytical model in which the
DCB specimen was modeled as a Timoshenko beam on a rigid foundation. His results suggest that KD

goes through a minimum before rapidly rising as a function of v. The issue of KD going through a
minimum at a nonzero velocity is of great signi®cance in crack arrest considerations. Given the
inaccuracies in the measurement of crack velocity and the limitations in the interpretation of the
experimental results, this question invites further experimental studies with improved accuracy. From
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the theoretical point of view, this phenomenon has been recently linked to material rate sensitivity by
the work of Freund and Hutchinson (1985) and Freund et al. (1986).

Despite these advances, the dynamic fracture criterion (1) should not be construed as a universal
relation, and the assumptions implicit in such criteria, which determine their scope and range of
applicability, should be carefully noted. Firstly, since (1) is written in terms of stress-intensity factors,
the small-scale yielding condition of linear-elastic fracture mechanics (LEFM) is tacitly assumed to be in
force. For this assumption to be appropriate, the plastic zone must be con®ned to a region near the tip
of the crack much smaller that any and all remaining geometrical dimensions of the problem, including
the crack length, ligament size, and others. Secondly, a statement of the form (1) tacitly presumes that
the asymptotic near-tip ®elds, including plastic deformations and inertia, are autonomous, with their
form independent of the shape and size of the crack, the geometry of the body, the loading
con®guration and the load history. Under these conditions, the near-tip ®elds which mediate the
separation processes are fully characterized by a limited set of parameters, e.g. the stress-intensity
factors, and it is reasonable to assume that the crack-tip motion is a function of these parameters only.
In e�ect, the principal objective behind the dynamic fracture criterion (1) is to conveniently encapsulate
a vast array of micromechanical processes attendant to a moving crack tip, such as plasticity, inertia,
heat conduction and others, so that such phenomena need not be explicitly accounted for in full-system
analyses.

In many cases, however, it may be unreasonable to expect that such complex interacting processes as
accompany a running crack may be subsumed within as simple a relation as (1). For instance, the
fracture criterion (1) may be expected to break down under fully yielded conditions, or near a free
surface owing to the emergence of shear lips. In the work presented in this paper, we have endeavored
to validate an entirely di�erent approach based on:

1. Multiscale analysis. Advances in adaptive mesh re®nement and other computational methods
presently enable the simultaneous resolution of full-system ®elds as well as near-tip ®elds, with the
result that the latter need not be accounted for, i.e. buried, in the fracture criterion.

2. Cohesive theories of fracture. The explicit resolution of the near-tip ®elds has the far-reaching
consequence that only the actual surface-separation processes need to be contemplated in the fracture
criterion. Here, those separation processes are modeled by recourse to cohesive theories of fracture
and their computational embodiment, cohesive elements.

In the present work, we take the dynamic drop-weight test as a convenient basis for assessing the
predictive ability of cohesive models of fracture in applications involving dynamic crack growth. These
models Ð pioneered by Dugdale (1960), Barrenblatt (1962), Rice (1968) and others Ð regard fracture
as a gradual phenomenon in which separation takes place across an extended crack `tip', or cohesive
zone, and is resisted by cohesive tractions. Cohesive models enable the incorporation into the analysis of
bona ®de fracture parameters such as the spall strength Ð the peak cohesive traction Ð and the
fracture energy Ð the area under the cohesive law Ð of the material. In particular, the existence of a
well-de®ned fracture energy endows the solid with characteristic, or `intrinsic', spatial and temporal
lengthscales. The particular class of cohesive law contemplated in the present work is due to Ortiz and
Pandol® (1999) and accounts for ®nite kinematics and irreversible behavior. Other alternative
formulations may be found elsewhere (Rose et al., 1981; Needleman, 1987; Ortiz, 1988; Beltz and Rice,
1991; Rice, 1992; Ortiz and Suresh, 1993).

Cohesive laws have been built into ®nite element analyses as mixed boundary conditions (Hillerborg
et al., 1976; Carpinteri, 1986; Needleman, 1987, 1990a, b, 1992; Xu and Needleman, 1993; Planas et al.,
1994; Tvergaard and Hutchinson, 1993, 1996a, b) or have been embedded into cohesive ®nite elements
(Willam, 1989; Ortiz and Suresh, 1993; Camacho and Ortiz, 1997; Xu and Needleman, 1994, 1995, 1996;
De-AndreÂ s et al., 1998; Ortiz and Pandol®, 1999). These elements are surface-like and are compatible
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with general bulk ®nite element discretizations of the solid, including those which account for dynamics,
plasticity and large deformations. Cohesive elements bridge nascent surfaces and govern their separation
in accordance with a cohesive law. In two-dimensional fragmentation simulations, both plane strain and
axisymmetric, Camacho and Ortiz (1996) and Ortiz (1996) have established the feasibility of using
cohesive elements to account explicitly for individual cracks as they nucleate, propagate, branch and
possibly link up to form fragments, as well as of simulating explicitly the granular ¯ow which ensues
following widespread fragmentation. Camacho and Ortiz (1996) have also shown that mesh-size
independent results are obtained when the mesh adequately resolves the cohesive zone. The ®delity of
cohesive elements in applications involving dynamic fracture in ductile materials has recently been
investigated by Pandol® et al. (1999), who have simulated the expanding 1100-0 aluminum ring test of
Grady and Benson (1983). The numerical simulations have been found to be highly predictive of a
number of observed features, including: the number of dominant and arrested necks; the fragmentation
patterns; the dependence of the number of fragments and the fracture strain on the expansion speed;
and the distribution of fragment sizes at ®xed expansion speed.

The organization of the paper is as follows. The test con®guration and diagnostic techniques
employed in the experimental phase of this study are brie¯y discussed in section 2, which also collects
the observational data and their analysis. The particulars of the cohesive laws and elements adopted in
the numerical phase of the study are succinctly summarized in section 3. Detailed comparisons between
full three-dimensional ®nite-element simulations and the experimental data are presented in section 4.
These comparisons demonstrate that cohesive theories accurately predict sensitive aspects of the
dynamic fracture of C300 steel such as crack-growth initiation conditions and crack propagation
velocities.

2. Dynamic fracture of C300 steel

A common approach in dynamic fracture testing is to observe the propagating crack tip area using an
optical technique and to infer the K d

I value. These methods rely upon an accurate analytical description
of the near crack tip stress ®elds. A number of analytical crack-tip ®elds are presently available giving
the dominant singular term as well as higher-order expansions for many problems, including steady-state
crack propagation and transient crack propagation. Some of the experimental methods presently in use
are caustics, photoelasticity and CGS. Early attempts at using the method of caustics for propagating
cracks were made by Kaltho� et al. (1976), Katsamanis et al. (1977), Theocaris (1978) and Goldsmith
and Katsamanis (1979). They used quasi-static crack-tip ®elds for analyzing the dynamic shadow
patterns, neglecting inertial e�ects. As the crack velocity becomes a substantial fraction of the Rayleigh
wave speed, the inertial e�ects signi®cantly modify the crack tip stress ®elds. Kaltho� et al. (1978)
introduced an approximate correction factor to be applied to static analysis to account for dynamic
e�ects. The ®rst accurate, fully dynamic analysis of caustics was carried out by Rosakis (1980).
However, this analysis was based on the assumption of steady state crack growth. Later Beinert and
Kaltho� (1981), Rosakis et al. (1984, 1988), Ravi-Chandar and Knauss (1983, 1984a, b, c, d), Kaltho�
(1985), Zehnder and Rosakis (1986, 1990) and Knauss and Ravi-Chandar (1985) used this fully dynamic
analysis in the interpretation of their experimental data.

These analyses assume the existence of a region of K d
I dominance near the crack tip. The question of

K d
I -dominance around a propagating crack tip was addressed in detail by Krishnaswamy and Rosakis

(1990). Their results suggest that the value of KD obtained using steady-state analyses could be in error
by as much as 30% in the presence of transient e�ects. Following the development of solutions for
transient crack propagation by Freund and Rosakis (1992), Liu et al. (1993) discussed a consistent way
to analyze caustic patterns generated in the presence of transient e�ects. This procedure is yet to be
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applied to actual experimental data. Despite being attractive for its simplicity, the method of caustics
needs to be evaluated carefully for its use in transient crack propagation.

Dynamic photoelasticity has been extensively used for crack propagation problems by many
investigators on birefringent polymers and later adopted to metals. This technique has been discussed in
great detail by Kobayashi (1978), Irwin et al. (1979) and Kobayashi and Dally (1980). Irwin (1958) and
Bradley and Kobayashi (1970) used a two parameter approach to extract fracture parameters from the
photoelastic fringes by a single point measurement. Further improvements in fringe analysis were made
by Sanford and Dally (1979) who used a three-parameter approach and a least-squares procedure to
analyze data from many fringes. Being a full ®eld technique, photoelasticity gives information about the
stress ®eld in a ®nite area around the crack tip. As the distance from the crack tip increases, the higher-
order terms become signi®cant and must be accounted for. A higher-order asymptotic expansion given
by Atluri and Nishioka (1983) for a steadily propagating crack was used by Dally et al. (1985), Chona
et al. (1983), Chona and Sanford (1988), Sanford and Chona (1984) and Shukla and Chona (1988) to
obtain dynamic fracture toughness. But, as pointed out by Rosakis (1993) and Krishnaswamy and
Rosakis (1990), the relative importance of the higher-order terms in transient crack propagation is
in¯uenced not only by the distance from the crack tip, but also by the time histories of the crack
propagation velocity and the stress intensity factor. Thus, though the steady-state higher-order analysis
of photoelastic fringes is an improvement over the previous methods, it might still be inadequate in
obtaining accurate fracture parameters. In addition, application of photoelasticity to metals requires the
use of birefringent coatings and other techniques which could themselves introduce errors.

Another full-®eld technique that has been in use in recent years is the method of CGS (Rosakis,
1993). This technique is readily applicable to transparent as well as opaque materials in addition to
being insensitive to rigid-body motions of the specimen. Initial studies of the applicability of CGS to
dynamic crack propagation were conducted by Krishnaswamy et al. (1992) on PMMA. The fringes were
analyzed using the transient elastodynamic ®eld. The results of their study demonstrated that the stresses
and strains around a propagating crack could be described with good accuracy by the transient ®eld
mentioned above, and that the fracture parameters could be extracted reliably from the analysis. In
addition, for transient dynamic fracture studies, where the interpretation of caustics has been questioned
(Rosakis, 1993) dynamic CGS has enabled the investigation of causes that lead to problems with
caustics. Caustics by re¯ection has so far been the dominant optical method applied to study dynamic
crack growth in opaque structural materials. The ability of CGS to investigate dynamic fracture
problems in opaque materials makes this full-®eld technique an attractive alternative to caustics. In the
present investigation, CGS has been used to study dynamic fracture in C300 maraging steel (Fig. 1). The
details of the optical technique and experimental setup are succinctly summarized next.

2.1. Optical technique and experimental setup

The optical technique of CGS is a shearing interferometric technique that is sensitive to inplane
gradients of out of plane displacements in re¯ection mode and in-plane stress gradients in transmission
mode. This technique can be thought of as the full ®eld equivalent of the optical method of caustics.
Detailed description of the technique, the equations governing optical mapping and fringe formation can

Fig. 1. Chemical composition of C300 maraging steel.
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be found in Tippur et al. (1990, 1991) and in Rosakis (1993). A schematic illustration of the
experimental setup along with the optical technique is shown in Fig. 2. For opaque materials, this
technique involves re¯ecting a collimated laser beam from the surface of the deforming specimen and
optically shearing it by sending it through two high density gratings separated by a distance D. This
gives rise to multiple di�raction spots of orders 0, 21, 22, . . . and the interference fringe pattern given
by the +1 or the ÿ1 order spot was recorded by the imaging system. In the current experiments, the
beam has been sheared in a direction along the crack. The governing equation for interpreting the
interference fringes is:

u3, 1 � @u3
@x1
� mp

2D
�2�

where u3 is the out of plane displacement of the specimen surface, x1 is the direction of shearing of
beam, m is the fringe order and p is the pitch of the gratings. Thus, each fringe represents the locus of
constant u3,1 on the specimen surface.

The specimens were subjected to three point bend impact loading under a drop weight tower. The
mass of the falling weight was 200 kg and the impact velocities ranged from 5 to 10 m/s. The specimens
were made of C300 maraging steel, the chemical composition of which is shown in Fig. 1. They were cut
from a 6.35 mm thick plate in annealed condition and a notch of 250 mm width was cut using electric
discharge machining. The heat treatment involved aging them for 5 h at 4828C followed by air cooling.
The specimens were then subjected to fatigue loading to grow a 1.5 mm long sharp crack. The surface
of the specimen was then prepared by lapping and polishing to get high optical re¯ectivity.

During the experiment, a strain gage attached to the specimen at the impact location triggers a
pulsing laser system upon impact. The pulsing system used was an argon ion laser of wavelength
514.5 nm and the pulse width was 8 ns. The laser system gives 80 distinct pulses at predetermined
repetition rate and these pulses are re¯ected from the specimen surface. The re¯ected pulses, after
passing through the CGS optics, are recorded using a high speed camera (Cordin 330A) capable of
recording at a rate of 2 million frames per second. In the current experiments, the camera was operated
at 0.24 million frames per second.

Fig. 2. Experimental setup for the drop weight test.
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2.2. Experimental results and analysis

A typical sequence of high speed photographs of the CGS interferograms associated with propagating
crack is shown in Fig. 3.

One could notice the stress waves associated with crack propagation indicating the transient nature of
the process. From these pictures, the crack tip location as a function of time is measured. Using a three
point polynomial ®t, crack tip location is di�erentiated to get the crack velocity history. Fig. 16 shows
the crack tip location history (Fig. 16(a), dark line) and the crack propagation velocity (Fig. 16(b), dark
line) history for one experiment where the impact velocity was 10 m/s. In this experiment, crack
propagation began 100 ms after impact. Freund and Rosakis (1992) and Rosakis et al. (1991) have
developed a higher order description of the transient stress deformation state at the vicinity of a
dynamically propagating crack. By recalling that the out of plane displacement ®eld u3 is proportional
to the ®rst stress invariant in-plane stress (i.e. u3=ÿn/E(s11+s22)) and by using the appropriate
transient higher order spatial description for the near tip stress ®eld, one could rewrite equation (2) as
follows:

Fig. 3. Sequence of high speed photographs of the CGS interferograms. The time interval between the pictures is 10 ms. The ®rst

photograph refers 80 ms after the impact.
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fl � tan ÿ1�al tan f�, rl � r cos f�1� al tan 2 f� �4�

f2 �
1

2
fl, f3 �

3

2
fl, f5 �

5

2
fl, f7 �

7

2
fl �5�

D�v� � �1� a2s ��a2l ÿ a2s �
4alas ÿ �1� a2s �2

, am �
"
1ÿ

�
v

cm

�2
#1=2

�m � l, s� �6�

cl and cs are the longitudinal and shear wave speeds, respectively, n is the Poisson's ratio, h is the
specimen thickness and E is the Young's modulus. The polar coordinates r and f are de®ned in Fig. 4.
On the right hand side of the equation, K d

I is the dynamic stress intensity factor which is in general a
function of time. b2 . . . b8 are spatial constants which are also functions of time to be determined along
with K d

I . Let the left hand side of the above equation be denoted by Z d
I and the right hand side be

denoted by G d
I (r, f; K

d
I , b2, . . . , b8). If K

d
I dominance exists, Z d

I would be a constant and be equal to
the instantaneous stress intensity factor K d

I . If signi®cant higher order terms exist, then the variation of
Z d

I would be given by G d
I and the value of the stress intensity factor is obtained by setting r=0 in G d

I .

Fig. 4. Polar coordinate system referred in Eq. (4).
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A least-squares procedure analogous to the one described by Tippur et al. (1991) was used to ®t the
above function G d

I to the experimental function Z d
I obtained from the CGS interferograms to extract

K d
I and the b's. Since the above equations strictly hold for plane stress elastodynamics, one should be

concerned about the sizes of the near tip three dimensional region (Rosakis and Ravi-Chandar, 1986)
and the crack tip plastic zone. For the given material properties, the plastic zone size estimate was much
smaller compared to the specimen thickness, leaving one to deal with the near tip three dimensional
region whose radius is approximately equal to one half of the plate thickness (Rosakis and Ravi-
Chandar, 1986). This has been taken care of by excluding any fringe data from the near tip three
dimensional region in the analysis. This was done using the results from a three dimensional
elastodynamic ®nite element analysis described by Krishnaswamy et al. (1991). Fig. 5 shows the results
of one such analysis. In Fig. 5(a) the isolated points represent Z d

I obtained from experimental fringes
and the dotted lines represent the constructed function G d

I from the least squares analysis. One could
notice the good agreement along di�erent radial directions. This could also be seen in the agreement
between the digitized data points and the generated fringes using the parameters obtained from the least
square procedure in Fig. 5(b), which demonstrates the applicability of dynamic CGS in conjunction with
transient elastodynamic crack tip ®elds to measure fracture parameters. Fig. 6(a) shows the time history
of the crack velocity and the time history of K d

I for one experiment where the impact velocity was
10 m/s. For a growing crack, a cross plot between these two time histories establishes the dependence of
the critical value of the dynamic stress intensity factor (dynamic toughness KD) on crack tip speed. KD

vs v data obtained from many di�erent experiments is shown in Fig. 6(b). As is evident from the ®gure,
the dynamic fracture toughness increases almost by a factor of two as the crack tip speed approaches
25±30% of the material Rayleigh wave speed. In Fig. 19(a), the fracture surface obtained in a 10 m/s
impact velocity experiment is shown. One can notice that this surface is predominantly ¯at with small
458 shear lips at the edges.

3. Finite element model

We begin by considering the general case of a deformable body occupying an initial con®guration B0

WR 3. The boundary @B0 of the body is partitioned into a displacement boundary @B0,1 and a traction
boundary @B0,2. The body undergoes a motion described by a deformation mapping jjj:B0 � �0, T �4R3,
where [0, T ] is the duration of the motion, under the action of body forces r0b and prescribed boundary
tractions t

-
applied over @B0,2. Let F be the attendant deformation gradients and P the ®rst Piola±

Kirchho� stress tensor (cf, e.g. Marsden and Hughes, 1983). In addition, the solid contains a collection
of cohesive cracks. The locus of these cracks on the undeformed con®guration is denoted S0, Fig. 7.

Under these conditions, the weak form of linear momentum balance, or virtual work expression, takes
the form:�

B0

�r0�bÿ �jjj� � ZZZÿ P � r0ZZZ� dV0 ÿ
�
S0

t � (ZZZ) dS0 �
�
@B0, 2

Åt � ZZZ dS0 � 0 �7�

where a superposed dot denotes the material time derivative, r0 is the material gradient, ZZZ is an
arbitrary virtual displacement satisfying homogeneous boundary conditions on @B0,1, t are the cohesive
traction over S0, and ( � ) denotes the jump across an oriented surface.

As is evident from (7), the presence of a cohesive surface results in the addition of a new term to the
virtual work expression. Evidently, in order to complete the de®nition of the problem, a set of
constitutive relations for the cohesive tractions t must be provided. These constitutive relations are in
addition to and are independent of the conventional constitutive relations describing the bulk behavior
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Fig. 5. (a) Least squares ®tting procedure of the dominant near crack tip stress ®eld. The isolated points represent Z d
I obtained

from experimental fringes and the lines represent the function G d
I . (b) Comparison of the digitized experimental fringes (squares)

and the theoretical generated fringes (lines).
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Fig. 6. (a) Time history of the crack tip velocity (squares) and KD (circles); (b) Croos plot of KD vs v for di�erent experiments.
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of the material. To this end, we postulate the existence of a free energy density per unit underformed
area over S0 of the general form

f � f�ddd, y, q;n� �8�

where

ddd � (jjj) �9�

are the opening displacements over the cohesive surface, y is the local temperature, q is some suitable
collection of internal variables which describe the inelastic processes attendant to decohesion, and n is
the unit normal to the cohesive surface in the deformed con®guration. The explicit dependence of f on
n is required to allow for di�erences in cohesive behavior for opening and sliding. By recourse to
Coleman and Noll's method (e.g. Lubliner, 1972, 1973) it is possible to show that the cohesive law takes
the form

t � @f
@ddd
: �10�

The potential structure of the cohesive law is a consequence of the ®rst and second laws of
thermodynamics. The evolution of the internal variables q is governed by a set of kinetic relations of the
general form

Çq � f�ddd, y, q�: �11�

A more general class of free energies which allows for surface anisotropy and ®nite opening
displacements have been considered by Ortiz and Pandol® (1999).

To further simplify the formulation of mixed-mode cohesive laws, we follow Camacho and Ortiz
(1996) and introduce an e�ective opening displacement

Fig. 7. Cohesive surface traversing a 3D body.
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d �
��������������������
b2d2S � d2n

q
�12�

where

dn � ddd � n �13�
is the normal opening displacement and

dS �j dddS j�j dddÿ dnn j �14�
is the magnitude of the sliding displacement. Evidently, the parameter b assigns di�erent weights to the
sliding and normal opening displacements. A simple model of cohesion is then obtained by assuming
that free energy potential f depends on ddd only through the e�ective opening displacement d, i.e.

f � f�d, y, q�: �15�
Under these conditions, the cohesive law (10) reduces to

t � t

d
�b2dddS � dnn� �16�

where

t � @f
@d
�d, y, q� �17�

is a scalar e�ective traction. It follows from (12) and (16) that the e�ective traction is

t �
����������������������������
bÿ2 j tS j2 �t2n

q
: �18�

This relation shows that b de®nes the ratio between the shear and the normal critical tractions. In brittle

Fig. 8. Two simple choices of cohesive law, expressed in terms of an e�ective opening displacement d and traction t: (a) loading-

unloading rule from Smith±Ferrante envelop; (b) loading-unloading rule from linearly decreasing loading envelop.
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materials, this ratio may be estimated by imposing lateral con®nement on specimens subjected to high-
strain-rate axial compression (Chen and Ravichandran, 1994, 1996). Upon closure, the cohesive surfaces
are subject to the contact unilateral constraint, including friction. Since the dropweight experimental
geometry of interest here does not lead to signi®cant mode II sliding of the crack, we simply model
crack closure in the spirit of penalty methods, i.e. by the introduction of a small surface compliance.

Fig. 8 depicts the particular type of irreversible cohesive laws envisioned here. Irreversibility manifests
itself upon unloading. Therefore, an appropriate choice of internal variable is the maximum attained
e�ective opening displacement dmax. Loading is then characterized by the conditions: d=dmax and _dr0:
Conversely, we shall say that the cohesive surface undergoes unloading when it does not undergo
loading. We assume the existence of a loading envelop de®ning a relation between t and d under
conditions of loading. A simple and convenient relation is furnished by Smith and Ferrante's universal
binding law, Fig. 8(a), or by the linearly decreasing envelop shown in Fig. 8(b). Following Camacho and
Ortiz (1996) we shall assume unloading to the origin, Fig. 8, giving

t � tmax

dmax

d, if d < dmax or _d < 0: �19�

For the present model, the kinetic relations (11) reduce to a straightforward computation of dmax. In
order to measure the extent of decohesion, we shall ®nd it convenient to introduce a damage parameter

D � f�dmax �
Gc

: �20�

Evidently, D ranges from 0 to 1, with these limits corresponding to an uncracked solid and a fully
formed new surface, respectively. Furthermore, we require that

_Dr0 �21�

as be®ts the irreversibility of damage.
A particularly appealing aspect of cohesive laws as models of fracture is that they ®t naturally within

the conventional framework of ®nite element analysis. One possible approach is to implement the

Fig. 9. Geometry of cohesive element. The surfaces Sÿ and S+ coincide in the reference con®guration of the solid.
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cohesive law as a mixed boundary condition, relating tractions to displacements at boundaries or
interfaces (Hillerborg et al., 1976; Carpinteri, 1986; Needleman, 1987, 1990a, b, 1992; Planas et al., 1994;
Tvergaard and Hutchinson, 1993, 1996a, b). Here, by contradistinction, we follow Willam (1989), Ortiz
and Suresh (1993) and Xu and Needleman (1994), and directly embed the cohesive law into surface-like
®nite elements, leading to the formulation of so-called `cohesive' elements. In addition, we follow
Camacho and Ortiz (1996) and adaptively create new surface as required by the cohesive model by
duplicating nodes along previously coherent element boundaries. The introduction of cohesive surfaces
may result in drastic changes in the topology of the model (Pandol® and Ortiz, 1999). The nodes are
subsequently released in accordance with a tension-shear cohesive law.

The geometry of the cohesive elements considered here is shown in Fig. 9. The element consists of
two six-node triangles endowed with quadratic displacement interpolation. Fig. 10 also demonstrates the
compatibility between the cohesive elements and ten-node volume elements. Inserting the displacement
interpolation into the virtual work expression (7) leads to a system of semi-discrete equations of motion
of the form:

MÈx� f int�x� � fext�t� �22�
where x is the array of nodal coordinates, M is the mass matrix, fext is the external force array, and fint

is the internal force array. In calculations we use the second-order accurate central di�erence algorithm
to discretize (22) in time (Belytschko, 1983; Hughes, 1983, 1987). Despite the fact that the time step is
bounded by stability (Hughes, 1983), explicit integration is particularly attractive in three-dimensional
calculations, where implicit schemes lead to system matrices which often exceed the available in-core
storage capacity. Yet another advantage of explicit algorithms is that they are ideally suited for
concurrent computing (Mathur et al., 1996).

4. Numerical tests and comparison with experiment

We have conducted detailed simulations of one of the drop-weight dynamic fracture tests described in
the foregoing. We take this test as a convenient yet exacting validation problem for assessing the ®delity

Fig. 10. 3D assembling of a 12-nodes triangular cohesive element with 10-nodes tetrahedra.
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of cohesive models in applications involving dynamic fracture. In particular, simulations of the drop-
weight test e�ectively probe the ability of cohesive theories of fracture to track dynamically initiating
and growing three-dimensional cracks in solids undergoing ®nite plastic deformations and heating. The
assumed test con®guration is shown in Fig. 11. A rectangular three-point bend specimen is subjected to

Fig. 12. Material parameters for C300 steel adopted in the numerical calculations. The material is assumed to obey J2-plasticity

with power-law hardening, rate dependency and linear thermal softening (e.g. CuitinÄ o and Ortiz, 1992; Marusich and Ortiz, 1995;

Camacho and Ortiz, 1997). The temperature ®eld is calculated locally assuming adiabatic conditions.

Fig. 11. Geometry of three-point bend test specimen.
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dynamic loading as imparted by a falling weight which strikes at the midsection of the specimen. The
specimen has an initial precrack 2.54 cm deep within its midsection sharpened by fatigue, Fig. 11.

The e�ect of the falling weight is approximated by prescribing a constant velocity of 10 m/s at the
point of contact. Because of the impulsive nature of the motion, the problem is ideally suited to explicit
dynamics. In explicit calculations a cohesive law of the form shown in Fig. 8(b) is preferable to a law of
the Smith±Ferrante type, Fig. 8(a), as the initial elastic slope in the latter may place stringent
restrictions on the stable time step for explicit integration. The material Ð brittle C300 steel Ð is
assumed to obey J2-plasticity with power-law hardening and rate dependency, as well as linear thermal
softening. The temperature ®eld is calculated locally assuming adiabatic conditions (e.g. CuitinÄ o and
Ortiz, 1992; Marusich and Ortiz, 1995; Camacho and Ortiz, 1997). The volume elements are 10-node
quadratic tetrahedra and the state variables are updated by recourse to the method of extension of
CuitinÄ o and Ortiz (1992). In view of the brittleness of the C300 steel under consideration, the extent of
shear lip formation may be expected to be small. Consequently, the crack surface may be approximated
as remaining essentially planar and con®ned to the midsection of the specimen. In order to allow for
dynamic crack growth, we tile the midsection of the specimen with cohesive elements such as described
above. Fig. 12 collects the material parameters employed in the calculations. The constitutive material
parameters have been obtained in-house, by means of Kolsky bar experiments performed on C300 steel
specimens of the same batch and heat treatment as those used in the fracture experiments. The quasi-
static fracture parameters (KIC, GC) have been established by using fracture specimens of the same
geometry as in the dynamic tests loaded hydraulically in a three point bend con®guration.

The computational meshes are shown in Figs. 13 and 14. The meshes are designed so as to be ®ne
and nearly uniform on and in the vicinity of the crack plane, and to gradually coarsen away from the

Fig. 13. Overall view and detail of the crack plane corresponding to a coarse ®nite element mesh comprising 6280 nodes, 3410 tet-

rahedra and 130 cohesive elements.
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crack plane up to a large uniform mesh size. All surfaces and the interior of the specimen are meshed
automatically by an advancing front method (Radovitzky and Ortiz, 1998). In order to investigate the
in¯uence of mesh size, we have considered a coarse mesh, which contains 6280 nodes, 3410 tetrahedra
and 130 cohesive elements; and a ®ne mesh comprising 42,428 nodes, 26,110 tetrahedra and 704
cohesive elements. The minimum mesh size in the ®ne mesh is 0.4 mm, which reasonably resolves the
cohesive zone size. Based on this dimension and the elastic moduli, a stable time step for explicit

Fig. 14. Overall view and detail of the crack plane corresponding to a ®ne ®nite element mesh comprising 42,428 nodes, 26,110 tet-

rahedra and 704 cohesive elements.

Fig. 15. Deformed geometry of the specimen after 2.4 ms.
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Fig. 16. (a) Experimental (black) and numerical (gray) crack tip trajectories. (b) Crack-tip velocity computed by a three-point nu-

merical di�erentiation formula. Calculations done using coarse mesh of Fig. 13.
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integration may conservatively be estimated as Dt=0.005 ms. The dynamic analysis starts at impact and
its duration is 200 ms, or a total of 40,000 time steps.

The deformed mesh for the coarse model is shown to scale in Fig. 15 after the passage of 2.4 ms. At
this time, the specimen is clearly split into two identical fragments. The ®nite rotations undergone by the
specimen should be carefully noted, as they demonstrate the need to account for ®nite kinematics in the
calculations. It is also interesting to note that the temperature rise is con®ned to a narrow zone

Fig. 17. Level contours of the damage variable D showing di�erent stages of crack growth (Dt = 10 ms). Calculations done using

®ne mesh of Fig. 14.

Fig. 18. Level contours of the equivalent plastic strain at di�erent stages of crack growth (Dt=10 ms), showing the development of

shear lips near the lateral surfaces. Calculations done using ®ne mesh of Fig. 14.
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surrounding the crack tip, and to the region of contact between the specimen and the impactor, where
plastic deformations are large. Indeed, as the falling weight strikes the specimen, it deeply indents the
top surface, with the result that as the crack approaches the surface it encounters material which has
been prestressed plastically.

The ability of the cohesive elements to simulate the emergence of the crack through the upper surface
of the specimen is noteworthy. As the crack approaches the surface, the ligament diminishes steadily
and eventually becomes comparable in size with the plastic zone, at which point the small-scale yielding
condition breaks down. The situation is further compounded by the fact that the region where the crack
cuts through the top surface is plastically prestrained by the weight, a circumstance which in¯uences the
propagation of the crack. It is therefore noteworthy that a single description of the fracture behavior of
the material, supplied by the cohesive model, e�ectively governs all phases of the growth of the crack,
including crack-growth initiation, propagation, both in the interior of the specimen and at the specimen
lateral surface, and the intersection of the crack and upper surface. By way of sharp contrast, within the
conventional fracture mechanics framework exempli®ed by the fracture criterion (1), each of these
aspects of crack growth requires a di�erent ad hoc criterion tuned to the prevailing conditions of
deformation, which greatly increases the degree of empiricism of the formulation.

The numerical and experimental trajectory and speed of the central point of the crack front are
plotted in Fig. 16. It is evident from Fig. 16(a) that the cohesive model matches the point of crack-
growth initiation and the subsequent trajectory of the crack remarkably well. The velocity history of the
crack front as computed by a three-point numerical di�erentiation formula is shown in Fig. 16(b). The
agreement between simulation and observation is as good as may be expected when derivatives of
primitive quantities are computed. Again, it should be carefully noted that the velocity of the crack tip
is an outcome of the calculation and is not in any way built into the model a priori.

Fig. 19. (a) Experimental fracture surface. (b) Level contours of equivalent plastic strain 0.2 ms after impact. Calculations done

using ®ne mesh of Fig. 14.
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Details of the crack growth process are shown in Figs 17±19. Fig. 17 depicts contours of the damage

variable D, Eq. (20), at di�erent stages of growth. A value of D = 0 denotes the absence of cracking,

whereas the limiting value of D = 1 denotes a fully formed crack. The narrow transition zone between

these two limiting values may be regarded as a smeared crack tip, or cohesive zone. It is observed in

Fig. 17 that the crack front develops a small curvature as it propagates and it lags behind somewhat

near the free surface as a consequence of enhanced plastic activity in that region (tunneling). This

enhanced plastic activity is clearly evident in Fig. 18, which shows the contours of the equivalent plastic

strain. A direct comparison of the computed plastic activity and the experimentally observed plastic

surface is also shown in Fig. 19. As expected the plastic zone is markedly larger near the free surface,

Fig. 19(b), as a consequence of the attendant loss of constraint and the emergence of shear lips,

Fig. 19(a). The good agreement between the observed size of the shear lips and the computed zone of

enhanced plastic activity near the surface is noteworthy.

While these features are relatively weak in C300 steel, as be®ts the brittleness of the material, they

nevertheless serve to illustrate the point that the shielding e�ect of plasticity and the attendant

retardation of the crack tip are indeed predicted by the simulations. Furthermore, it should be noted

that such e�ects are not built into the fracture criterion a priori, but rather follow naturally from the

explicit consideration of plasticity over multiple length scales, including the scale of the near tip ®elds.

A sensitivity analysis of the crack-tip trajectory to the fracture toughness KIc, the cohesive strength sc,
and the ratio b=KIIc/KIc is shown in Figs. 20±22. As may be seen from Fig. 20, the main e�ect of an

increase (decrease) in KIc is to retard (anticipate) the crack-growth initiation time. Interestingly, the

e�ect of a variation in KIc on the crack propagation velocity is negligible by comparison, Fig. 20.

Similarly, an increase (decrease) in the cohesive strength sc retards (anticipates) the crack-growth

Fig. 20. Sensitivity of the crack tip trajectory to variations in the fracture toughness KIc. Calculations done using coarse mesh of

Fig. 13.
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initiation time and has little or no e�ect on the crack propagation velocity, Fig. 21. Finally, we have
investigated the sensitivity of the crack trajectory to the parameter b appearing in the de®nition of the
e�ective opening displacement, Eq. (12). This parameter may be interpreted as the ratio KIIc/KIc of
mode II to mode I toughness. As expected from the primarily mode I character of the crack growth in
the drop-weight test, the ratio b has little or no e�ect on the crack trajectory, Fig. 22. This fact can be
explained observing that the brittle nature of C300 steel does not allow for the development of large
shear lips, i.e. regions where decohesion has taken place by a primarily 3-D shear failure mechanism.

5. Summary and conclusions

We have taken the dynamic drop-weight test as a convenient basis for assessing the ®delity and
predictive ability of cohesive models of fracture in applications involving dynamic crack growth. In an
experimental phase of the study, CGS has been used to study dynamic fracture in C300 maraging steel.
The specimens were subjected to three-point bend impact loading under a drop weight tower. High-
speed photographs of the CGS interferograms were analyzed to determine the crack tip location and
velocity and dynamic stress intensity factor as a function of time. Post-mortem examination of the
specimens revealed the fractography of the fracture surfaces, including the development of shear lips. In
a parallel numerical phase of the study, fracture has been modelled by recourse to an irreversible
cohesive law embedded into cohesive elements. These cohesive elements govern all aspects of the
separation and closure of the incipient cracks. The cohesive behavior of the material is assumed to be
rate independent and, consequently, all rate e�ects predicted by the calculations are due to inertia and

Fig. 21. Sensitivity of the crack tip trajectory to variations in the cohesive strength sc. Calculations done using coarse mesh of Fig.

13.
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the rate dependency in plastic deformation. The ®nite element model is three dimensional and consists
of quadratic ten-noded tetrahedra. The numerical models were calibrated by means of experimentally
obtained constitutive and cohesive law parameters.

The numerical simulations have proven highly predictive of a number of observed features,
including: the crack growth initiation time; the trajectory of the propagating crack tip; and the
formation of shear lips near the lateral surfaces. These features follow naturally from a single
description of the fracture properties of the material, supplied by the cohesive law, and are not
built in piecemeal into the model. By separately accounting for plasticity, inertia and thermal
e�ects, the description of the fracture behavior may focus sharply on the separation processes
responsible for the creation of new surface, which considerably cuts down on the level of
phenomenology of the theory. In this particular sense, the fracture model and the bulk constitutive
relations constitute truly independent mechanical postulates. In particular, the applicability of the
theory is not restricted by the type of bulk behavior, the geometry of the specimen and loading,
the size of the plastic region or the presence or absence of inertia.

It should also be noted that the use of cohesive theories in calculations relies strongly on the ability to
resolve multiple length scales simultaneously. Thus, Camacho and Ortiz (1996) have also shown that
mesh-size independent results are obtained when the mesh adequately resolves the cohesive zone, which
tends to be small in typical materials. Recent advances in automatic meshing, mesh adaption and
computer hardware have contributed to making the type of multiscale analysis called for by cohesive
models increasingly feasible. In this particular sense, cohesive models of fracture partake of the present
emphasis on physics-based multiscale analysis of materials, an emphasis which may only be expected to
be a�rmed in the future.

Fig. 22. Sensitivity of the crack tip trajectory to variations in the ratio b=KIIc/KIc. Calculations done using coarse mesh of Fig. 13.
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