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Abstract

Meshfree Galerkin approximations in both two and three dimensions have been used in simulations of dynamic shear band
propagation in an asymmetrically impact-loaded prenotched plate. Failure mode switching and failure mode transitions, which have
been reported experimentally, are replicated in numerical computations. For intermediate impact speed (25 m/s < ¥ <30 m/s), the
numerical results show that a cleavage crack initiates from the tip of the dynamic shear band, indicating a dominance of brittle failure
mode, and a failure mode switch (ductile-to-brittle: shearband-to-crack). For high impact velocities (¥ > 30 m/s), the numerical re-
sults show that a dynamic shear band penetrates through the specimen without trace of cleavage-type fracture, which is a ductile failure
mode. Overall, with the increase of impact speed, the final failure mode of the impacted plate transits from brittle failure to ductile
failure. By introducing a multi-physics model to describe the stress collapse state of the shear band, it has been found that there is a
non-uniform temperature distribution inside the adiabatic shear band. Strong evidences indicate that temperature distribution inside
the shear band has periodic patterns in both space and time, confirming the latest experimental results of P. Guduru et al. [Mech.
Mater. (2000), submitted]. This suggests that there may exist a thermal-mechanical instability within the adiabatic shear band,
reminiscent of hydrodynamic instability due to viscous heating. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Adiabatic shear band; Dynamic shear band propagation; Crack propagation; Failure mode transition; Meshfree methods;
Strain localization; Multi-physics modeling

1. Introduction

One of the important achievements of experimental mechanics in the late 20th century is the optical/
infrared diagnostics and measurement of dynamic shear band propagation. Although the physical phe-
nomenon may have been known for at least two decades or more, the precise observation and measurement
of such physical process had not been obtained until the late 1980s. The pioneer work conducted by
Kalthoff and Winkler [15,18,16] (here it is referred to as KW problem in the rest of paper) and the equally
important work conducted by Marchand and Duffy [32] led to active studies of dynamic shear band
propagation and failure mode transition during recent years (relevant references may be found in a special
issue of International Journal of Fracture, Vol. 101, 2000).

* Corresponding author. Tel.: +847-491-7094; fax: +847-491-3915.
E-mail addresses: li@ce.berkeley.edu (S. Li), w-liu@northwestern.edu (W.-K. Liu), d-qian@northwestern.edu (D. Qian),
pradeep@its.caltech.edu (P.R. Guduru), rosakis@aero.caltech.edu (A.J. Rosakis).

0045-7825/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0045-7825(01)00245-6



74 S. Li et al. | Comput. Methods Appl. Mech. Engrg. 191 (2001) 73-92

Several authors have conducted similar experiments under different designs and different experiment
settings, notably Mason et al. [33] and Zhou et al. [51,52] (here it is referred to as ZRR problem in the
rest of paper). They have used a single notch specimen in an impact test to observe dynamic shear
band propagation, in contrast to the double notch impact plate experiment conducted by Kalthoff and
Winkler [18]. Ravi-Chandar [42] also carried out a similar experiment on polycarbonate plate impact
test. Remarkably, all the experiments unequivocally support an unusual fact that under high strain rate
condition, there is a “brittle-to-ductile” failure mode transition. When impact velocity in an interme-
diate range Vg < V < Vsp (subscript “TF” denotes tension fracture, and subscript “SB” denotes shear
band) [15], a local mode-I crack is initiated from the notch tip and propagates in a direction upward
from the notch line direction (70° in [15,18] and 30° in [52]). The subtlety between the KW problem
and the ZRR problem is that at intermediate impact speed range the KW experiment shows the mode-I
crack directly initiated from the notch tip, whereas in the ZRR experiment a shear band is first initiated
from crack tip and subsequently a mode-I crack is initiated from the shear band tip (the so-called
failure mode switch: ductile-to-brittle). In both events, the final failure mode is a brittle failure in this
impact speed range. When bullet impact velocity exceeds a threshold limit, Vsg, all the experimental
results reported that a shear band is intiated from the notch tip, and propagates through the thin plate
specimen without trace of cleavage fracture, i.e. the final failure mode is a purely ductile failure. This
change of final failure mode with the increase of the impact speed has been referred to as the dynamic
failure mode transition, as Kalthoff puts, “the higher the loading rate in mode-II tests, the harder it is to
Sfulfill the requirement of sufficiently large in-plane dimensions and, consequently, the most favorable be-
come the conditions for a non-linear ductile type failure of the material as represented by shear band
failure mechanisms” (from [17]).

However, theoretical analyses as well as numerical simulations failed to predict such experimental
outcome, and in general, dynamic shear band propagation has remained to be elusive to numerical sim-
ulations. The few published simulation results [1,2,38,39] have not been able to capture the physical process
of dynamic shear band propagation. The simulation reported by Zhou et al. [51] is the only successful
numerical simulation in observing dynamic shear band propagation, but it also failed to predict failure
mode transition. Recently, by using a meshfree Galerkin method, Li et al. [25] successfully replicated dy-
namic shear band propagation in a single notched plate (ZRR problem), and observed the failure mode
transition for the first time in numerical simulations.

Several technical issues have arisen in numerical simulations of dynamic shear band propagation. First,
it has not been clear on how to model the stress collapsing state of a shear band. Without proper modeling
of stress collapsing state of the shear band, the widely spread, phenomenological, thermo-elastic—visco-
plastic constitutive models seem to be incapable of providing the sufficient information to describe post-
bifurcation behaviors of strain localization zone. In order to simulate dynamic shear band propagation, a
multiple physics mode may be needed in constitutive modeling of dynamic shear band. This opinion has
gained some ground in recent years [2,51], because no one has yet found propagations of a weakly singular
surface (localization zone) in numerical simulations based on conventional approach. Zhou et al. [51]
adopted a Newtonian fluid for constitutive modeling of a 2D shear band (plane strain), whereas Batra and
Nechitailo [2] used a compressible ideal fluid to model the 2D shear band in the localization zone. This
multiple constitutive law approach has made it possible to simulate dynamic shear band growth. Never-
theless, its foundation has not been fully justified yet, and it introduces new problems: the presence of small
viscous force will cause severe mesh distortion due to large plastic flow motions in Lagrangian type of finite
element implementation. Furthermore, strong mesh-alignment sensitivity of finite element methods con-
tributes another source for the inability of conventional numerical methods to simulate such physical
processes.

A very suitable computational paradigm for shear band simulations is the meshfree Galerkin method
[21,25], a state-of-the-art technology in computational mechanics [4,22,27-31,36]. In this work, a 3D
meshfree Galerkin simulation of dynamic shear band propagation is presented, which faithfully replicates
the entire process of the failure mode transition at various impact speeds. Different from our early com-
putations [25], the impact event is modeled as a rigid projectile colliding with a single pre-notched plate,
whereas in our previous computation [25] prescribed velocity boundary condition is imposed at the impact
zone to mimic collision conditions. The other important aspect of this study is to justify the use of
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multi-physics constitutive laws in modeling dynamic shear band formation. By choosing the suitable multi-
physics model, we have studied the micro-structure of adiabatic shear band. It has been found that the
temperature field, effective stress, as well as effective strain fields within the strain localization zone are
dynamically structured, which confirms the recent experimental measurement made by Guduru et al. [14].
They have reported that there is a periodic distribution of “hot spots” in temperature profile within the
shear band. It appeared that there is thermo-mechanical instability within the adiabatic shear band, which
causes periodic temperature distribution in space as well as in time.

2. Formulations
2.1. An explicit meshfree Galerkin formulation

Recently, meshfree methods have been successfully used in simulations of strain localization prob-
lems [20,21,23,24]. 1t has been shown that meshfree method, in particular the reproducing kernel
particle method [26,28-30], has a natural ability to avoid mesh-alignment sensitivity that finite element
methods have long suffered, mesh distortion under large deformation, as well as volumetric locking for
incompressible materials. Therefore, it is a natural choice to use meshfree method to undertake this
task.

The basic idea of the reproducing kernel particle method (RKPM) is to construct a proper kernel
function on a set of randomly distributed particles ((1) there is no mesh here! (2) the word randomly implies
the particle distribution is also statistically isotropic). By doing so, one may approximate a function desired
through a “reproducing” or “filtering” representation

1y (x) = Zyulx /J/ — u()de, (1)

where 4 ,(X) :=1/0"#(X/0), p is the dilation parameter that is associated with the support size of the
kernel function, and » is the spatial dimension. The RKPM kernel function is compact supported, and
usually very smooth, #'(X) € C¥(Q) and N > 1. The 3D tri-linear RKPM meshfree shape function used in
computations is constructed by using the following polynomial basis:

PX) = {1,X|, X0, X3, X1.0, Xo.X3, X3.X1, X1 X0 X3 ], (2)

where X := (X, X5, X;3). Embedding either a cubic spline box function, or a fifth-order spline box function
as window function, the kernel function can be explicitly written as

X —X
Y

HoX) = A (K~ X) = P( )b(Xwgm ~X)AV. )

where ¢,(X) is the normalized window function, AV, is the integration weight, and the vector b(X) is
determined by solving the following algebraic equation:

M(X)b(X) = P(0), where P(0) = {1,0,...,0,0}", (4)

where the moment matrix
NP
X —X X —X
X) = ZPT< ! >P< ! >AV,.
pa P p
After all the laboring, the reproducing kernel particle interpolation can be put into a simple form

=Y Xy, i=1,2,3. (5)

leA

To visualize the spatial profile of such a shape function, we plot a single shape function and its three first-
order derivatives in Fig. 1. Even though the support size of the shape function is a rectangular box, one may
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Fig. 1. 3D RKPM/meshfree shape function and its first derivatives generated by the tri-linear polynomial basis, P(X) = (1, X}, X3, X;,
X120, X:X3, XX, X1 X,X3): (a) the shape function, 2, (X); (b) the derivative, ', v, (X); (c) the derivative, 4", x, (X); (d) the derivative,
H x5 (X).

observe from Fig. 1 that the domain of non-zero value of the shape function tends to be a sphere, and the
domain of non-zero value of the derivatives of the shape function are two connected spherical regions; this
means that the spatial distribution of RKPM shape function is almost “isotropic’”, which is a desired
property in some situations, such as shear band simulation. In Fig. 1(a), we take the first octant out from
the quasi-sphere region, and one can see that the shape function reaches its maximum at the corresponding
particle, i.e. the center. In each of Fig. 1(b)—(d), we take one quadrant out to see the orientation and the
distribution of the derivatives.

Note that an RKPM representation is a spatial convolution in a strict sense, whereas the finite element
interpolation can be viewed as a spatial convolution only in the sense that the kernel function is a gen-
eralized function. Assume that in the domain Q there is a valid particle distribution,
A:={1,2,...,...,NP}. Discretizing (1) yields

W(X) = A Xy = X)AViuy. (6)

Eq. (6) represents a special interpolation, which is related with discrete convolution. For simplicity, in the
rest of the paper, we shall simply denote #",(X; — X)AV; as N;(X). Eq. (6) can be viewed as a non-local
interpolation (or not a “interpolation” based on the conventional definition). In such “non-local inter-
polation™, any points in the domain, including particle points, are covered by multiple shape functions
(note that in finite element approximation, the nodal point is only covered by a single shape function).

Let x denote the spatial location of a material point and X denote the referential location of this material
point, the displacement of the material point is defined as

u:=x—X. (7)
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The deformation gradient is given by

ox
Fi=—. 8
X (8)
A weak form of the balance of linear momentum can be written as
T o%u
P:0F d2y= [ pB-oudQy+ [ T-oudl'y— | py—oudQ, 9)
o N 1 o, Ot

where T is the prescribed traction on the traction boundary, B is the body force, I g, and P denotes the
nominal stress tensor, which can be related to the Kirchhoff stress tensor as T = F - P. For simplicity, the
boundary conditions are specified with respect to the referential configuration

n-P=T VXeIl, (10)
u=u VXery (11)

where I'y U T = 0Q,.
Assume that the trial, and weighting functions have the forms

uh(X, t) = iN[(X)d[(t), (12)
ou"(X,1) = f:N,(X)éd,(t), (13)

where NP is the total number of particles.
The weak form (9) will yield the following discrete equations:
d*u” -
M—— = " — ", 14
i (14)
The conventional row-sum lumped technique is adopted in computing mass matrix, M, and the external
and internal forces are calculated as follows:

i = / T!(X, {)Ne;dT + / poB! (X, )Ny (X)e;d<o, (13)
T Q

. oN,

fint — / Phl—leldQ , 16

! Qo ! aXJ ’ ( )

where e;, i = 1,2, 3 are the unit vectors of the referential coordinate system.
2.2. Energy equation

The rate form of balance of energy is

/pédQ+i/Bv-de:/ t-vdF—/ n-qdrl, (17)
Q de Jo 2 Q oQ

where e is the specific internal energy, v = du/dt, and t is the flux of mechanical force, or traction; and q is
the heat flux vector through the boundary.
Considering the rate form of balance of mechanical energy, we have

/t~vdF:/a:DdQ+g/lv-de. (18)
0Q Q dt Jo p

Substituting Eq. (18) into Eq. (17) and pulling back Eq. (17) into the referential configuration yields
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/poédQO:/ t:Don—/ JN-F . qdrIy, (19)
Qo Q() aQQ

in which, the standard volume/area transformations, dQ = JdQ,, J = det{F}, adl' =J NF~'dr,, are used,
where i and N are the outward normals of surface elements in the spatial and the referential configurations,
respectively.

We neglect thermo-elastic contribution on internal work, i.e. 7: (D°+ D') ~ 0, and assume that the
main part of plastic work is converted into heat [44]. Using the specific heat at constant pressure, C,, to
approximate the specific heat at constant stress, one may be able to derive the energy equation featured
with adiabatic viscous heating

or
poCog, = 27DV + Vx(JE ' k- F - VxT) VX € Q. (20)

Because the entire impact process lasts only a few hundred ps, the effect of heat conduction may be neg-
ligible. Considering adiabatic heating, i.e. neglecting heat transfer, we have

oT Y
PonEZXTIDp~ (21)
By doing so, the coupled thermo-elasto-viscoplastic problem is reduced to a mechanical problem. So the

momentum equation, Eq. (9), suffices for constructing Galerkin weak form, and the energy equation (21) is
only used in the constitutive update.

2.3. Constitutive update
A rate form constitutive equation is used
7= C™(D - D" — DY), (22)
where the Jaumann rate of Kirchhoff stress, ¥, is defined as
v .
T=1-W-1+7-W. (23)

A thermo-elasto-viscoplastic material model is adopted (see [51]), which is described as

: (24)

, (25)

g(g,T)ao[1+g/eo}N{15[exp<T;T°>1”, (26)
cim [M%DVP:DVPdt, (27)

where m is the power index, €, is the referential strain rate, oy is the yield stress, ¢ = o¢/E, and ¢ is the
thermal softening parameter. The thermal rate of deformation, D', is given as

D' = ofl, (28)

where o is the coefficient of thermal expansion, and 1 is the identity matrix.

Constitutive update follows the adiabatic rate tangent modulus formula explained in [25]. The essence of
the rate tangent modulus method is to approximate a function of time in the interval ¢,.9 € [, t,11],
0 €10,1], as
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Jo = (1=0)fy + 0fis1. (29)

For kinematic variables, this may fall into a special case of standard Newmark-f method. However, a
non-trivial task is to update the Kirchhoff stress. The following approximation is used in constitutive
update:

Tn+l = Ty + %()At7 (30)
‘bgz‘rvg—l—wg-‘c,,—&—tn~wg, (31)
where
v tan €n 100
=C":Dy— Py +3Ko 52— 32
Ty 0 0 {lJrég} 0+ Ofpcp ], (32)
where
50 5 75n
Con = - >0 P, @Py+ (34 + 20010 Py, 33
0 Hy(1+ &) ’ o+ 2 PoCo ! 9

is the adiabatic tangent stiffness, and it is not symmetric. Assuming that €y and &y are available after the
stress update, the temperature field is updated at each quadrature point

T = T, + ThAt, (34)
where

. A

Ty = . 35

0 pOCp60<70 ( )

2.4. Modeling stress collapsing state of shear band

How and why a strain localization zone is able to propagate has not been well understood until today.
This reflects a lack of theoretical understanding, as well as a lack of successful numerical simulations. In
many simulations, the initial strain localization zone simply does not propagate. As shown by Gioia and
Ortiz [12], the stress field near the initial strain localization zone at the pre-notch tip in a thermo-elastic-
viscoplastic material is somewhat diffusive. This has been confirmed in the numerical analysis by Needle-
man [37] for an elasto-viscoplastic material. This “diffusive” nature of the stress field in front of the “tip” of
strain localization zone seems to retard the advance of the material instability. In fact, until this date, the
notion that a shear band, or a strain localization zone in a solid represented by a simple constitutive re-
lation, can automatically advance under external load as a crack has never been verified in numerical
computations.

On the other hand, based on Marchand and Duffy’s experiments [32], there are three stages in the de-
velopment of adiabatic shear band formation. In the third — the final stage, the effective strain is up to more
than 40%, and flow stresses begin to drop rapidly. This stress collapsing phenomenon in the localization
zone has been also predicted by the theoretical study by Wright and his co-workers [46,49]. The main
assumption of this work is that the stress collapsing within the fully developed shear band will significantly
reduce the shear stress carrying capability of the localization zone, and it will lead to the localized strain
rate concentration at the shear band tip, and thus initiate the advancement of the localization zone. In other
words, stress collapsing is the key for dynamic shear band propagation.

Based on this premise, the crucial technical ingredient for simulating dynamic shear band propagation is
how to model the stress collapsing state of the adiabatic shear band. Zhou et al. [51] modeled the stress
collapsing state as a “Newtonian fluid”, and by doing so they appeared to be the first group of people to be
able to simulate the dynamic shear band propagation. Li et al. [25] used a similar fluid model in a
3D meshfree simulation, and they accurately replicated dynamic shear band propagation, failure mode
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transition, as well as curved shear band formations. In this study, we use a separate constitutive relation to
model the stress collapsing state inside the adiabatic shear band, and view this type of approach as a
multiple physics modeling. Since the stress collapsing region inside the shear band is of the order of um, the
use of multiple physics model is appealing.

It is well known that plastic deformation is caused by dislocation movement. On the other hand, adi-
abatic shear band in crystalline is characterized by local high temperature rise (up to metal’s melting point) ,
and high strain rate (up to 10*~10° s=!). At high temperature and high strain rate, lattice vibration becomes
the major obstacle for dislocation motion, which is often referred to as phonon drag. The physical process
is rate sensitive, and temperature-dependent. Two types of phenomenological constitutive laws have been
used in the literature to describe the inelastic deformation under high temperature and strain rate loading
conditions. The first type is a temperature-dependent deformation mechanism that is modeled by an
Arrhenius-type law [7,45] as follows:

rroexp{—ﬁ{%—l}}<%)m, (36)

where 19, 7y, and 6y are the reference stress, strain rate, and temperature. A 3D generalization of (36)
oy = —pdy+2exp[— B0 — 1)y" ' Dy (37)

has been used by Molinari and Leroy [19,34,35]) to model the shear band that occurs in the ductile shear
zones of the earth’s lower crust. Eq. (37) is in fact a constitutive relation for a non-Newtonian fluid.

Another type of constitutive law used under high strain rate condition is based on the experimental data
of Campbell and Ferguson [5]

. . L\ T T . .
R L (39)

where u is the elastic shear modulus at the temperature in question, and 1, is the transition shear stress
associated with 7,. And 7,, 7, are constants depending on material’s properties at high strain rate. Eq. (38) is
basically a statement that under high strain rate and high temperature condition the shear stress increment
is proportional to the increment of shear strain rate, since when 7, > 7,, the deformation state is up to the
phonon drag control region. Similar constitutive equations of plastic flow at high strain rate were compiled
by Frost and Ashby [11]. The simple relation (38) is generalized into a 3D formulation by Freund and
Hutchinson [10] in their study of crack growth under high strain rate condition, which is now known as the
Freund-Hutchinson theory

1 F(q)

Df =5 = sy, where F() =, +jo(t — 7)1 (39)

where s;; is the deviatoric stress tensor. And

14+, V.
TG” _—Ukkéi/'. (40)

ijz 7

If one neglects deviatoric elastic deformation, which is small in the high strain rate region, and the constant
term j, — 9,7,/ u, the plastic deformation described in Eq. (39) resembles a Newtonian fluid motion. Note
that one may rewrite F (1) as

F©) =2 e+ i f o = ), 41

The constant term uyj,/7, — 7, might be interpreted as stress drop, and it may be set to 0 in the stress
collapsing zone.

Combining the above two approaches, we use the following constitutive equations to model the stress
collapsing state in the core region of the adiabatic shear band:
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0;; = —pd; + W (T)Dy, (42)

where the shear modulus or viscosity coefficient can be temperature dependent, such as
. T—-T
u(T)=uoeXp[—ﬁ< T )] (43)

where f is an empirical constant. The equation of state is the usual thermo-elastic relation

p=K(—e+ ol -T)), (44)

where e = Ou;/0x;, i.e. volumetric expansion, K* is the elastic bulk modulus, and o is the linear coefficient of
thermal expansion. In the context of large deformation, Eq. (42) is replaced by

1y = —K'[1 = J + T — Tp)]|6;; + ' (T) Dy, (45)

where 7;; is the component of Kirchhoff stress tensor; J := det |F|. Since the rate of deformation tensor is
always objective in any coordinate system, once the rate of deformation is obtained, one can immediately
update the Kirchhoff stress. Generalizing the Talyor and Quinney law [44], one may assume that

DT
pOCpEZXT:D, 0<y<l. (46)

The constitutive update of stress collapsing region is as follows:

Step 1. i = —K*[1 ="' + o(T, — Ty)] 6 + p* (T,) D}

ij
X n+1 yn+1
T DI A
poCp VY

(47)

Step 2. T, =T,+

In our preliminary study, we neglected the temperature dependence on u (in our formulation, the spatial
density p(T) is a function of temperature rise, which may not look apparent in a Lagrangian formula). The
threshold at which a material point enters stress collapsing phase is controlled by the following empirical
criterion proposed by Zhou et al. [51]:

é

(6, +¢)’

€r =€+ (&2 —€1) (48)

where €|, €; and ¢, are empirical the parameters depending on material’s properties. When the effective
strain of a material points reaches to &, the material point is considered in the stress collapsing state, and
Eq. 47 is used in state variable update.

3. Numerical simulation of asymmetric impact problem
3.1. Overview

The computations carried out in this work focus on simulating the experiments conducted by Zhou et al.
[52], i.e. the ZRR problem. The experiment involves an asymmetrically impact loading of a pre-notched
plate (single notch) by a cylindrical projectile as shown in Fig. 2. In this numerical study, two configurations
have been used to simulate plate specimens of different sizes, which correspond to two different sets of
experiments. The first configuration models the experiment conducted by Zhou et al. [52] (see Fig. 3(a)),
while the second one models the experiments conducted recently by Guduru et al. [14] (see Fig. 3(b)). It may
be noted that in the second specimen, there is a 2 mm long fatigue crack in front of the pre-notch, which
increases the acuity of the crack. We have conducted both 2D and 3D simulations for the first specimen: a
3D computation with projectile speed at ¥ =30 m/s, and 3D computation with projectile speed at
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Fig. 2. An asymmetrically impact-loaded plate with a pre-notched crack.
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Fig. 3. Configuration of single notch specimens: (a) specimen one; (b) specimen two.

¥ =33 m/s. For the second specimen, we have only carried out a 2D computation with projectile speed at
V =37 m/s.

The primary objectives of these simulations are twofold: (1) to capture failure mode transition; (2) to
determine the adiabatic shear band growth criterion and driving force.

3.2. Case I: Intermediate speed impact (V =30 m/s)

In the experiment conducted by Zhou et al. [52], when the impact velocity is in the intermediate range,
i.e. 20.0 m/s < ¥ < 30.0 m/s, a shear band initiates from the notch tip, and it is then arrested within the
specimen interior. The final failure of the specimen is caused by brittle fracture — a cleavage-type (mode-I)
crack growing from the end of the arrested shear band. This shearband-crack switch under fixed impact
speed is intriguing, whose causes are not understood well. It is therefore of considerable challenge to
simulate such a failure mode switching phenomenon. The main parameters in our simulations are listed in
Table 1.
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Table 1
Material properties of the target plate

Parameter Value Definition

é 1x1073s! Reference strain rate

m 70 Rate sensitivity parameter

) 2000 MPa Yield stress

€y O'()/E

n 0.01 Strain hardening exponent

To 293 K Reference temperature

0 0.8 Thermal softening parameter

K 500 K Thermal softening parameter

E 200 GPa Young’s modulus

v 0.3 Poisson’s ratio

o 7830 kg/m3 Mass density

¢ 448 J/(kg K) Specific heat

o 112 x 1070 K! Coefficient of thermal expansion

b4 0.9 The fraction of plastic work converted to heat
€] 4.0 x €y

€ 0.3

é 4.0 x 10* 57! In a range (1.0 x 10*-6.0 x 10* s7!)

Fig. 4(a)—(f) shows a sequence of effective stress contours (SS [Pa]) surrounding the failure region fol-
lowing the impact. It can be clearly observed that a strip — a low effective stress zone initiates, and grows
starting from the notch tip, which we identify as the trace of adiabatic shear band. The shear band grows
steadily almost in the horizontal direction. At a certain point (Fig. 4(c)), it suddenly changes its direction
and moves upward. At this time within the strip, the value of effective stress vanishes, which indicates that a
crack is initiated from the tip of the shear band. We identify this turning point as the point at which the
shear band transits into an opening crack (see Fig. 4(d)—(f)). To view the shearband-to-crack switch clearly,
a 3D view of the plate under impact of the projectile is displayed in Fig. 5(a), (b). The color contour de-
picted on the surface of the specimen is effective stress (SS [Pa]), from which one may compare the initial
stage of shear band growth with the final stage of crack growth. In Fig. 5(a) (24.0 us after impact), there is
only a shear band in front of pre-notch. As the process continues, from Fig. 5(b), one can observe that a
crack is running away from the arrested shear band. In our previous study [25], the impact is simulated as a
prescribed velocity condition at the impact zone. The prescribed impact velocity is a linear ramp between 0
and 0.5 ps, it reaches 30 m/s at ¢+ = 0.5 ps and keeps constant until # =47 ps (Fig. 6).

In the current simulation, the impact between the projectile and the plate is modeled as a real collision
between a rigid cylinder projectile and a visco-elasto-plastic solid plate. One can compare the impact ve-
locity histories of projectiles of two different approaches (see Figs. 6 and 7).

In the computation, a total of 49,086 particles are used to discretize the plate, and 32,080 background
cells are allocated for the numerical quadrature. There are eight quadrature points in each background cell,
for a total of 256,640 Gauss quadrature points. For the projectile, a total 1299 particles and 792 back-
ground cells have been used in discretization. The density of the projectile is 7900 kg/ m’. The projectile is
125 mm long, and 50 mm in diameter.

3.3. Case II: High speed impact (V =33 m/s)

When the impact velocity exceeds a certain limit, Vg, ' the cleavage fracture of mode-I crack is sup-
pressed, the shear band initiated from the pre-notch tip never stops, and it propagates through the spec-
imen. Since the impact is due to an unsymmetric collision between the projectile and plate, the shear band

! In the experiments conducted by Zhou et al. [51], this critical velocity is Vsg = 29.6 m/s for C-300 steel. This value is expected to be
sensitive to material properties as well as pre-notch geometry and the size of the specimen used.
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Fig. 4. Brittle-to-ductile failure mode transition (I) (brittle failure mode at ¥ = 30.0 m/s): effective stress contour (SS [Pa]) of a 3D
simulation (front plane view): (a) ¢ = 24 ps; (b) t = 36.0 ps; (c) t = 48.0 ps; (d) + = 60.0 ps; (e) ¢ = 68.0 ps; (f) £ = 76.0 ps.

propagates slightly towards the lower part of the specimen, rather than propagating straight in the hori-
zontal direction. A sequence of 3D calculations are displayed in Fig. 8. The color contours represent the
effective stress (SS [Pa]) value. By examining the effective stress contours, one may notice that a thin strip
with lower effective stress value passes through the specimen, which is the trace of the adiabatic shear
band.

A sequence of 3D calculations have been displayed in Fig. 8, in which the effective stress contours are
depicted, one may observe the evolution of the shear band from effective stress contours. By comparing the
above results with the intermediate impact speed range, a complete picture of failure mode transition
emerges, i.e. a transition from the cleavage fracture of a brittle failure at lower impact speeds to the shear
propagation of a ductile failure at higher impact speeds.

As reported by Zhou et al. [51], the experimental results indicate that the shear band propagates along a
curved surface. Such shear band morphology is very difficult to capture by finite elements, because of the
generic mesh-alignment sensitivity in such simulations. Using meshfree methods, the curved shear band
formation has been accurately captured in the numerical computations presented here.
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4. Micro-structure of shear band
4.1. Micro-structure of adiabatic shear band

In most of the previous studies of adiabatic shear band, the field variables, such as temperature, shear
strain, or effective stress distributions are assumed to be uniform, and they are symmetrically distributed
across the width of the shear band [8,40,41,47,48], which Wright [48] referred to as the so-called “canonical
distributions”. If one views the shear band model as a plastic flow confined between two rigid plates moving
in opposition directions (compare the plane Couette flow), the conventional assumption is that this plastic
flow is “essentially laminar” [14]. Recently, Guduru et al. [13,14] have used high speed optical and infrared
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Fig. 7. The impact speed history of a rigid projectile colliding with the target.

techniques, such as 2D high speed infrared (IR) camera, to measure the temperature distribution within the
dynamically propagating shear band. The IR images, for the first time, revealed that the temperature
signature inside the adiabatic shear band is non-uniform, and it has short range spatial as well as temporal
periodicity. This periodic high temperature distribution pattern, i.e. “hot spots”, are in the middle of the
shear band, which have a length scale from 100 to 300 um.

The experimental observations [13] indicate that thermo-mechanical state inside the narrow adiabatic
shear band is very active, and undergoes large fluctuations. This is in contrast with the conventional notion
of micro-structure of shear band. The majority of the simple constitutive models paint a false picture of
“platonic tranquility” inside the shear band.

Employing a multi-physics model described in Section 2 to model stress collapsing state inside the
adiabatic shear band, we have simulated the exact experiment conducted by Guduru et al. [13,14] via
meshfree Galerkin method with the exact same geometry and size of the specimen (Fig. 3(b)). A total of
79,742 particles are used in the meshfree discretization. In this testing specimen, there is a 2 mm fatigue
crack in front of the pre-notch, which is modeled by using a meshfree visibility technique [3] to realize the
discontinuity as shown in Fig. 9.

The numerical simulation confirms the experimental observation that there exists periodic “hot spots’ in
temperature distribution within the adiabatic shear band, and these periodic “hot spots” move down
stream along the growing shear band. Since the width of the adiabatic shear band is very small,
(100-300 pm), the temperature distribution inside the shear band can be hardly seen by the naked eyes. We
zoom into the small box, a 1 mm x 1 mm area in front of the fatigue crack, to observe the transient micro-
structure of adiabatic shear band. The zoom-in process is displayed in Fig. 10, which is a three-level
magnification of temperature profile around the shear band region.

For the case of impact speed at 37 m/s, we compare the optical device measurement with numerical
computation. The experimental results (Fig. 11(a)—(c)) are juxtaposed with numerical results (Fig. 11(d)—
(f)). As shown in Fig. 11, there is a strong qualitative agreement between experimental data and numerical
results. Also one may find that as time goes by, the experimental data show that the localized high tem-
perature distribution starts to diffuse, or to spread out away from the shear band (yellow or green back-
ground in Fig. 11(a)—(c); whereas in numerical simulation, an adiabatic shear band model is adopted,
therefore, the background of the temperature profile is always in blue color, because of the absence of heat
transfer (cf. Fig. 12).

In addition, it has been found in the numerical simulation that such oscillatory temperature structure
may have high-dimensional character (see Fig. 13). Furthermore, the oscillatory structure not only exists in
temperature distribution, which is the only state variable susceptible to experimental measurement, but also
exists in effective stress profile and effective strain profile as well (Fig. 13(a) and (b)). This suggests that we



S. Li et al. | Comput. Methods Appl. Mech. Engrg. 191 (2001) 73-92

(e)

88
2,3994e+09

1.8116e+02

1.2238e+09

6.3605e+08

4.8286e+07

S8
2,3994e409

1.8116e+02

1.2238e+09

6.3605e+08

4.8286e+07

S8
239940409

1.8116e+02

6.3605e+08

4.8286e+07

(b)

(d)

U]

S8
2.39%4e409

1.8116e+09

1.2238e+09

6.3605e+08

4.8286e+07

88
23994409

1.8116e+03

1,2238e+09

6.3605e+08

4.8286e+07

88
2.3994e+09

1.8116e+02

1.2238e+09

6.3605e+08

4.8286e+07

87

Fig. 8. Brittle-to-ductile transition (II) (ductile failure mode at ¥ = 33.0 m/s): effective stress (SS [Pa]) contours of a 3D simulation.
Values next to the scale bars are (top to bottom): 2.3994¢ + 09, 1.8116e +09, 1.2238¢ + 09, 6.3605¢ + 08, 4.8286¢ + 07. (a) 24; (b) 36;

(c) 48; (d) 60; (e) 68; (f) 76 ps.



S. Li et al. | Comput. Methods Appl. Mech.

0.1275

0.12725

0.127

0.12675

0.1265 n n n 1 n n n n 1 n n n n ]
0-0225 0.025 0.0275 0.03

(a) X

| T S T ) NN N N N N TR ALY T U |
| 0.1 0.15 02 0.25
(@) X

0.1275

0.12725

> 0127

0.12675

0.1265
0.0285

(c)

0.02875

0,ﬂx29 0.02925 00295

0.128
0.1275
> 0127
0.1265

0.126

0.1
(b)

012
0.0

(b)

Engrg. 191 (2001) 73-92
024 0.025 0.026 0.027 0.028 0.029 0.03

X

Fig. 9. Numerical modeling of a fatigue crack: (a) the fatigue crack configuration with mesh; (b) the fatigue crack (line) configuration
without mesh.

275 003 0.035 00375

0.0325
X

0.1275

012725

0.127
S

0.12675

0.1265
(d) 0.0305

0.03075 0.03125 00315

0.031
X

Fig. 10. The micro-structure (temperature profile) of adiabatic shear band: (a) level one; (b) level two; (c) level three (1); (d) level



S. Li et al. | Comput. Methods Appl. Mech. Engrg. 191 (2001) 73-92 89

- ‘
(a)

(b)

01275
=0
0.1268

0.0285

0.1275]

" oazr

0.1265]

(@ (e) )

Fig. 11. Qualitative comparisons between experimental data and numerical computation on temperature distribution within the shear
band (V' = 37 m/s): (a), (d) t = 12 ps; (b), (e) £ = 36 ps; (c), (f) r = 72 ps (experimental results: (a, b, c); numerical results: (d, e, f)).

0.1275

> 0.127 =

0.1265
0.033

0.0335
X

0.034

Fig. 12. The two-dimensional oscillation pattern in temperature profile (K).

may be observing a new type of thermal-mechanical instability within the adiabatic shear band, analogous
to the classical instabilities in hydrodynamics (cf. Fig. 14).

For simplicity, one may simplify the adiabatic shear band problem as a 2D plane Couette problem with
viscous heating (constant viscosity, or variable viscosity) due to the Taylor—-Quinney mechanism. More
precisely, we assume that the stress-collapsing zone can be approximated as a 2D plane Couette flow with
viscous heating. Consider the Eulerian formulation of a multi-physics model of adiabatic shear band.
Assume that the plastic shear flow is solenoidal. The governing equations of well-developed shear band
zone (collapsing core) are as follows:
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where p = po(1 — (T — T)).

Some special cases, in which the viscosity—temperature relations derived from the Arrhenius-type law, or
Nahme-type law, have been studied before [43,50]. It has been well established that if viscosity is tem-
perature-dependent, hydrodynamic instability may occur. A temperature-dependent viscosity model has
been used by Molinari and Leroy [19,34,35] to study the shear band formation in the earth’s lower crust. A
thermo-mechanical instability has been found in their analysis. As a matter of fact, in [35] the “hot spot”
bifurcation solution is shown in numerical calculation. However, it is possible that in our multi-physics
model with constant (kinematic) viscosity coefficient, a thermo-mechanical instability may still exist. The
cause of the instability in this case could be due to the variance of temperature-dependent density. Under
this situation, Boussinesq approximation (see [6,9]) may no longer be valid, because the temperature rise is
of the order of 100-1000 K. Note that in the above formulation, the buoyancy force, the usual cause of
thermo-mechanical instability in fluid, is not considered. A detailed linear perturbation analysis of system
(49)—(51) will be presented elsewhere.
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It is plausible that the dynamic micro-structure of adiabatic shear band shown here may have some
influence on the ductile failure mechanism, or the brittle-to-ductile transition. The exact role of this possible
instability on failure mode transition is not clear at the moment.

5. Concluding remarks

In this study, a meshfree method — reproducing kernel particle method is used in a displacement-based
explicit formulation to simulate dynamic shear band propagation as well as micro-structures of adiabatic
shear bands.

We have accomplished two things: first a complete failure mode transition (from impact speed
V' =30 m/s to ¥ =33 m/s) has been replicated in meshfree simulation. When impact speed is below
30 m/s, under the mode-II loading, an adiabatic shear band is generated first, then quickly it turns into a
cleavage mode-I crack. When projectile impact speed is above 30 m/s, say at 33 m/s, a shear band
propagates through the pre-notched plate, showing ductile failure mechanism under higher strain rate
condition. Second, numerical simulations have confirmed the early experimental observation that there
exists a thermo-mechanical instability inside shear band, which might play a significant role in failure mode
transition.

We conclude that the main advantages of using meshfree interpolants in simulations of dynamic shear
band propagation are two: first, it can effectively avoid mesh-alignment sensitivity that finite element
methods suffer; second it can relieve mesh distortion when modeling stress collapsing state of the adiabatic
shear band as a purely plastic fluid in a Lagrangian formulation. In addition, this work has examined the
validity of multi-physics model used in constitutive modeling of the stress collapsing state in the adiabatic
shear band. By using multi-physics model, it first allows us to simulate dynamic shear band propagation;
furthermore, it predicts a possible thermo-mechanical instability occurring inside the adiabatic shear band,
which is either due to the viscous heating with thermo-mechanical coupling, or due to the viscous heating
with temperature-dependent viscosity.
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