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Abstract

Sudden jumps in the crack tip velocity were revealed by numerical simulation (in both con-
tinuum/cohesive element and molecular dynamics approaches) and experiments for rapid shear
cracking. The cracking velocity may accelerate from a sub-Rayleigh speed to the intersonic range,
or from an intersonic speed to a higher one, when the re1ected impact wave reloads the crack
tip. On the other hand, the cracking velocity may decelerate from an intersonic speed to a lower
one or recede to the sub-Rayleigh range when the fracture driving force declines. The velocity
change encountered during intersonic cracking plays a di3erent role from that in the acceleration
or deceleration of a subsonic crack. A crack propagating at an intersonic speed would leave a
shear wave trailing behind. When the crack decelerates or accelerates, the e3ect of the trailing
wave will lead to a transition period from one steady-state solution of crack tip singularity to
another. This investigation aims at quantifying these processes. The full 5eld solution of an
intersonic mode II crack whose speed changed suddenly from one velocity (intersonic or sub-
sonic) to another (intersonic or subsonic) is given in closed form. The solution is facilitated via
superposing a series of propagating crack problems that are loaded by dislocations to seal the
unwanted crack-face sliding or by concentrated forces moving at various speeds to negate the
crack-face traction. In contrast to the subsonic solution, the results in the intersonic case indicate
that the elastic 5elds around the crack tip depend on the deceleration or acceleration history that
is traced back over a long time. Singularity matching dictates the jump that may actually take
place.
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1. Introduction

The possibility of intersonic crack growth under shear-dominated loading was 5rst
examined by Burridge (1973) under the condition of negligible cohesion, with the crack
tip velocity v between shear wave speed cs and longitudinal wave speed cl. Using a
cohesive strip model, Andrews (1976) predicted that an intersonic crack eventually
stabilizes at the crack tip velocity of

√
2cs. The pioneering work on a steady-state

intersonic crack (cs ¡v¡cl) advancing in an elastic medium (Freund, 1979; Burridge
et al., 1979) indicated that the stress singularity of intersonic cracks is less than 1

2

except at a special (radiation free) crack tip velocity of
√

2cs, at which the energy
release rate is 5nite and non-vanishing. There were also early analytical studies of
shear-dominated intersonic crack propagation at a constant crack tip velocity subjected
to uniform shear on crack faces (Brock, 1977), stress singularity (Simonov, 1983;
Broberg, 1989) and self-similar crack propagation (Broberg, 1994).

For the 5rst time in laboratory experiments, Rosakis et al. (1999, 2000) observed
shear-dominated intersonic crack propagation along a weak plane in an otherwise ho-
mogeneous brittle polyester resin. The crack tip velocity not only exceeded the widely
believed limit for crack propagation, Rayleigh wave speed cR, but also exceeded the
shear wave speed cs and approached the longitudinal wave speed cl. The weak plane
in polyester resin served as the preferred path for crack propagation, and prevented
crack kinking and branching. Intersonic crack propagation was also observed in uni-
directional 5ber-reinforced composite materials (Coker and Rosakis, 2001), in which
weak interfaces between the 5bers and the matrix material became the preferred paths
for crack propagation. Indirect evidence of shear crack propagation in excess of shear
wave speed has also been provided from observations of shallow crustal earthquakes
(Archuleta, 1982; Beroza and Spudich, 1988; Wald and Heaton, 1994; Ellsworth and
Celebi, 1999).

Experiments by Rosakis et al. (1999, 2000) and Coker and Rosakis (2001) have
motivated recent analytical and numerical studies on shear-dominated intersonic crack
propagation. Broberg (1999a) and Huang et al. (1999) obtained the asymptotic crack
tip 5eld for an intersonic crack in an orthotropic solid, while Gao et al. (1999)
investigated the radiation-free intersonic crack tip velocity in general anisotropic solids.
Abraham and Gao (2000) used molecular dynamics to study transition of a sub-
sonic shear crack to an intersonic crack propagating along the interface between two
weakly bonded, identical harmonic crystals. Gao et al. (2001) studied the same prob-
lem with linear elasticity theory and established that, without any parameter 5tting,
continuum analysis agreed well with Abraham and Gao’s (2000) atomistic simula-
tions. Needleman (1999), Needleman and Rosakis (1999), Yu and Suo (2000), and
Geubelle and Kubair (2001) investigated shear-dominated intersonic crack propagation
with cohesive zone models in order to remedy the issue of vanishing crack tip en-
ergy release rate. Huang and Gao (2001) obtained the fundamental solution for an
initially stationary crack starting to propagate at an intersonic speed once a pair of
concentrated shear forces are applied on the crack faces. This fundamental solution
can be used to construct the general solution for uniform intersonic crack propagation
subjected to an arbitrary initial equilibrium 5eld. Finally, Antipov and Willis (2002)
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obtained the fundamental solution for intersonic crack propagation in linear viscous
solids.

For a crack propagating within the sub-Rayleigh regime (v¡cR), the solution for
arbitrary, non-uniform crack tip motion has been obtained (e.g., Freund, 1972, 1990;
Kostrov, 1975; Brock, 1977; Willis, 1989). Freund (1972) observed that, when a
sub-Rayleigh crack is suddenly stopped, the equilibrium solution immediately radi-
ates out from the crack tip at shear wave speed. This critical observation enabled
him to obtain a solution for a crack that suddenly stops and resumes propagating at
a di3erent sub-Rayleigh velocity, and to construct a general solution for non-uniform
(sub-Rayleigh) crack propagation. This eventually led to a universal relation between
the dynamic stress intensity factor and its equilibrium counterpart for the same crack ge-
ometry. For intersonic crack propagation (cs ¡v¡cl), however, recent work of Huang
and Gao (2002) showed that the stress intensity factor does not instantaneously reach
its equilibrium value when an intersonically propagating crack tip is suddenly arrested.
This is because the Rayleigh and shear waves are still trailing behind the intersonic
crack tip at the instant of crack arrest. In fact, Huang and Gao (2002) showed that the
equilibrium stress intensity factor is reached after a 5nite delay, i.e. after all the waves
trailing behind have passed the arrested crack tip. Accordingly, the universal relation
between dynamic and static stress intensity factors does not hold for intersonic crack
propagation.

Numerical simulation via continuum/cohesive elements (Needleman, 1999;
Needleman and Rosakis, 1999) revealed sudden jumps in the crack tip velocity. When
the impact wave arrives, the crack tip may accelerate from a sub-Rayleigh speed to an
intersonic speed (typically close to the longitudinal wave speed) crossing the forbidden
velocity zone, or from an intersonic speed to a higher one. The same phenomenon of
instant acceleration was observed in molecular dynamics simulations (Abraham and
Gao, 2000; Gao et al., 2001). The crack tip may also decelerate from an intersonic
speed to a lower intersonic speed or to a sub-Rayleigh speed when the fracture driving
force recedes. Experiments (Rosakis et al., 1999, 2000; Coker and Rosakis, 2001) have
also suggested these sudden rises and falls of the shear cracking velocity. The velocity
jump encountered during intersonic crack propagation plays a di3erent role from that
in the acceleration or deceleration of a subsonic crack. It may also serve as a crude
estimate for the general non-uniform accelerating or decelerating motion of a shear
crack within subsonic and intersonic ranges.

The above-mentioned points give us a strong impetus to investigate suddenly decel-
erating or accelerating intersonic cracks. Such a study would provide further insights
into the fundamental di3erence between sub-Rayleigh and intersonic crack propagation.
Unlike sub-Rayleigh crack propagation, the stress intensity factor for a crack propa-
gating with a varying velocity in the intersonic range [cs; cl] cannot be related to its
equilibrium counterpart for the same crack geometry. This is because the Rayleigh and
shear waves trailing behind will never catch up to pass the intersonic crack tip. Once
the crack tip velocity drops below the Rayleigh wave speed, the trailing Rayleigh and
shear waves will catch up with the sub-Rayleigh crack tip, and the universal relation
(Freund, 1972) between static and sub-Rayleigh dynamic stress intensity factors for the
same crack geometry will hold again.
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We consider an in5nite, linear elastic isotropic solid containing a semi-in5nite crack
under plane-strain deformation. A pair of concentrated shear forces are suddenly applied
on crack faces, and at the same instant the crack tip starts to propagate at a constant
velocity v1 that can be sub-Rayleigh (0¡v1 ¡cR) or intersonic (cs ¡v1 ¡cl). After
propagating for a 5nite time t∗, the crack tip velocity suddenly changes to v2 that
can also be sub-Rayleigh or intersonic. A closed-form solution for a suddenly decel-
erating crack (v2 ¡v1) is obtained in Section 2 by superimposing a series of moving
dislocation solutions to seal the sliding displacement between the decelerated crack tip
and the crack tip that would continue to propagate at the initial velocity v1. The case
of a suddenly accelerating intersonic crack, which bears important di3erences from a
decelerating crack, is solved in Section 3 by superimposing a series of moving point
force solutions to negate the shear traction between the accelerated crack tip and the
crack tip that would continue to propagate at the initial velocity v1. Both analyses con-
5rm Huang and Gao’s (2002) observation that, unlike sub-Rayleigh crack propagation,
stress intensity factor around an intersonically propagating crack tip depends on the
crack velocity history.

2. Decelerating crack

Consider a crack occupying the negative half x-axis with crack tip located at the
origin. At time t = 0, a pair of concentrated shear forces of magnitude �∗ is imposed
at the origin, which drives the crack to extend along the positive x-axis at a velocity
v1. At a later time t = t∗, the crack suddenly decelerates to a lower velocity v2 (¡v1)
after an extension of l = v1t∗. This problem can be viewed as the superposition of
following two sub-problems.

a. Continuous crack propagation at initial crack tip velocity v1. This is the fundamen-
tal solution obtained by Huang and Gao (2001). One important characteristic of
this solution is that the sliding displacement on crack faces (x¡ 0; y = 0) has the
similarity form uF

x (x; y = 0; t) = uF
x (x=t) = uF

x (w), namely it depends on time t and
coordinate x only through their ratio w = x=t.

b. Negation of crack-face sliding displacement between the actual crack tip, x= v1t∗ +
v2(t − t∗), and the crack tip that would continue to propagate at the initial velocity
v1, x = v1t, as stated in the 5rst sub-problem above. This is achieved by emitting
dislocations from the propagating crack tip in just the appropriate sequence. The
moving dislocation solution has also been used in the study of a suddenly stopping
intersonic crack (Huang and Gao, 2002).

2.1. A moving dislocation ahead of a propagating crack tip

The solution of a moving dislocation emitted from a stationary crack tip (Freund,
1990; Huang and Gao, 2002) is generalized for a propagating crack tip in this section
for both sub-Rayleigh and intersonic crack propagation. An in5nite solid containing a
semi-in5nite crack on the negative x-axis is stress free and at rest everywhere for time
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t ¡ 0. The crack tip begins to propagate from the origin (0, 0) along the positive x-axis
at time t = 0, and the crack tip velocity is denoted by v2. At the same instant t = 0, an
edge dislocation is emitted from the crack tip and propagates along the positive x-axis
at a higher velocity w (¿v2).

The in-plane displacements are expressed in terms of displacement potentials � and
 by

ux =
9�
9x +

9 
9y ; uy =

9�
9y − 9 

9x : (2.1)

The in-plane stress components can be written in terms of � and  as

�xx = �
(
c2

l

c2
s
∇2�− 2

92�
9y2 + 2

92 
9x9y

)
;

�yy = �
(
c2

l

c2
s
∇2�− 2

92�
9x2 − 2

92 
9x9y

)
;

�xy = �
(

2
92�
9x9y +

92 
9y2 − 92 

9x2

)
; (2.2)

where ∇2 denotes the Laplace operator, and � the shear modulus.
The equations of motion are given by

92�
9x2 +

92�
9y2 − 1

c2
l

92�
9t2 = 0;

92 
9x2 +

92 
9y2 − 1

c2
s

92 
9t2 = 0: (2.3)

The skew symmetry of the problem dictates that only the upper half-plane (y¿ 0)
needs to be analyzed. The boundary conditions are

�yy(x; y = 0; t) = 0; �xy(x¡v2t; y = 0; t) = 0;

ux(x¿v2t; y = 0; t) = bH (wt − x); (2.4)

where b is the (half) Burgers vector of the edge dislocation, and H is the unit step
function. Since the analysis is rather similar to that of sub-Rayleigh (e.g., Freund,
1990) and intersonic (Huang and Gao, 2001) crack propagation subjected to a pair of
concentrated forces, only the solution method and results pertinent to the decelerating
crack problem are presented in the following.

A coordinate system (�; y) = (x− v2t; y) moving with the crack tip is introduced. A
double Laplace transform with respect to time t and moving coordinate � is applied
to equations of motion (2.3) and boundary conditions (2.4). The Wiener–Hopf method
of analytic continuation gives the solution in transformed space, and the Cagnaird–de
Hoop method is then used to invert the double Laplace transform (e.g., Freund, 1990;
Huang and Gao, 2001). Only the stress intensity factor kII is given in the following
for sub-Rayleigh and intersonic shear crack propagation.
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2.1.1. Sub-Rayleigh shear crack propagation with a moving dislocation
The stress 5eld has a square-root singularity around a crack tip propagating

at a sub-Rayleigh velocity (v2 ¡cR). The stress intensity factor, de5ned by
kII = lim�→0+

√
2���xy(�; y = 0; t) for sub-Rayleigh crack propagation with a moving

dislocation at velocity w(v2 ¡w¡cl), is given by

kII = bksub
0 (t; w; v2); (2.5)

where

ksub
0 (t; w; v2) = −�

�2c2
s

�s2v2
2

cR + w
cR + v2

√
cs + v2

cs + w
ssub
−

( −1
w − v2

)√
2

�(w − v2)t
;

�2 = 4�l2�s2 − (1 + �2
s2)2; �l2 =

(
1 − v2

2

c2
l

)1=2

; �s2 =
(

1 − v2
2

c2
s

)1=2

(2.6)

and

ssub
± (�)

=exp


− 1

�

∫ 1=(cs∓v2)

1=(cl∓v2)
tan−1


4c3

s r
2
√

(1−v2r)2−c2
s r2

√
c2

l r
2− (1−v2r)2

cl[2c2
s r2− (1 ± v2r)2]2


 dr
r ± �


 :

(2.7)

It can be veri5ed that, as the crack tip velocity v2 approaches zero, the above results
(2.5)–(2.7) degenerate to Huang and Gao (2002) for a stationary crack tip with a
dislocation moving at velocity w.

2.1.2. Intersonic shear crack propagation with a moving dislocation
The stress 5eld around an intersonic shear crack tip (cs ¡v2 ¡cl) has a singularity

� ∼ r−q2 , where r is the distance to the crack tip:

q2 =
1
�

tan−1 4�l2�̂s2

(2 − v2
2=c2

s )2
; (2.8)

�l2 =
(

1 − v2
2

c2
l

)1=2

; �̂s2 =
(
v2

2

c2
s
− 1

)1=2

(2.9)

and the subscript 2 denotes quantities associated with the crack tip velocity v2. This
singularity is always weaker than the conventional square-root singularity except at a
single crack tip velocity v2 =

√
2cs (at which q2 = 1

2 ). Accordingly, the stress intensity
factor is de5ned by kII = lim�→0+

√
2��q2�xy (�; y = 0; t) for intersonic shear crack

propagation. Following the same approach for the fundamental solution of intersonic
crack propagation (Huang and Gao, 2001), we obtain the stress intensity factor around
an intersonic shear crack tip with a moving dislocation at velocity w (v2 ¡w¡cl) as

kII = bk int
0 (t; w; v2); (2.10)
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where

k int
0 (t; w; v2)

= − 4�

√
2
�
�l2�̂s2

c3
s (cl − v2)

v2
2(v2

2 − c2
R)

f(v2)
(
v2

2 − c2
s

c2
l − v2

2

)q2

× w2 − c2
R√

w + cl
√

w2 − c2
s
√
w − v2

s2−(−1=(w − v2))
s2−(0)

[(cl − v2)t]q2−1: (2.11)

Here functions s2−(�)=s2−(0) and f(v2), introduced by Huang and Gao (2001), are
given by

s2−(�)
s2−(0)

= exp
{
− �

�

∫ +∞

1=(cl+v2)

[�
2

+
(�

2
− tan−1 V−(r; v2)

)
H∗(r; v2)

] dr
r(r−�)

}
;

(2.12)

f(v2)

= exp

{[∫ 1=(v2+cs)

1=(cl+v2)
−
∫ +∞

1=(v2−cs)

]
tan−1

[
4�l2�̂s2V−(r; v2) − (2 − v2

2=c
2
s )2

4�l2�̂s2 + (2 − v2
2=c2

s )2V−(r; v2)

]
dr
�r

}
;

(2.13)

V±(r; v)

=
[2r2− (v2=c2

s )(r ± 1=v)2]2

4r2

√
1− v2

c2
l

√
v2

c2
s
−1

√(
r ∓ 1

cl − v

)(
r ± 1

cl + v

) ∣∣∣∣r ± 1
v− cs

∣∣∣∣
∣∣∣∣r ± 1

v + cs

∣∣∣∣
;

(2.14)

H∗(r; v) = H
(

1
v + cs

− r
)
− H

(
r − 1

v− cs

)
: (2.15)

Once again, the subscript 2 labels quantities associated with crack tip velocity v2.

2.2. Crack-face sliding displacement in the fundamental solution

Huang and Gao (2001) obtained the fundamental solution for intersonic crack prop-
agation, i.e., an initially stationary crack starting to propagate at a velocity v1 (v1 ¿cs)
once a pair of shear concentrated forces �∗ is applied at time t=0 to the initial crack tip
(x; y) = (0; 0). The sliding displacement across crack faces in this fundamental solution
depends on time t and coordinate x through their ratio x=t, i.e.,

 1(x¡v1t; t) ≡ ux(x¡v1t; y = 0+; t) − ux(x¡v1t; y = 0−; t) =  1

(x
t

)
(2.16)
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and  1 is given by (Huang and Gao, 2001, 2002)

 1(w) =
2
�

PV
∫ 1=(v1−w)

1=(cl+v1)
Im[U1−(")] d"; (2.17)

where PV stands for the Cauchy principal value integral,

Im[U1−(")]

=
√
clv1

c2
s

�∗

�
s1+(")

s1+(1=v1)
1 − v1"

4"2
√

(cl + v1)"− 1

×
{

1
1 + V 2−("; v1)

+
[

1
1 − V−("; v1)

− 1
1 + V 2−("; v1)

]

×H
(
"− 1

v1 + cs

)
H

(
1

v1 − cs
− "

)}
(2.18)

and

s1+(�)
s1+(1=v1)

= exp
{
−�− 1=v1

�

∫ +∞

1=(cl−v1)

tan−1 V+(r; v1)
(r + 1=v1)(r + �)

dr
}

: (2.19)

The subscript 1 denotes quantities associated with the crack tip velocity v1, and func-
tions V± are given in Eq. (2.14). It can be veri5ed that the function Im[U1−(")]
in Eq. (2.18) is the same as that in Huang and Gao (2002).

2.3. Stress intensity factor around a decelerating crack tip

Similar to Freund (1972, 1990) and Huang and Gao (2002), the decelerating crack
solution can be obtained from the fundamental solution for intersonic crack propagation
(Huang and Gao, 2001) by negating the sliding displacement from the decelerating
crack tip, x = v1t∗ + v2(t − t∗), to the crack tip that would continue to propagate at
an initial velocity v1, x = v1t. This sliding displacement in the fundamental solution
depends only on w = x=t, as shown in Eqs. (2.16) and (2.17). This implies that any
given displacement level radiates out along the x-axis at a constant speed w. The
range of w for negating the sliding displacement is from (v1t∗ + v2(t − t∗))=t to v1,
corresponding to two crack tips discussed above. For a given velocity w within this
range, the time tw at which the displacement  1(w) =  1(x=t) arrives at the decelerated
crack tip location x = v1t∗ + v2(t − t∗) is given by

tw =
v1 − v2

w − v2
t∗: (2.20)

For a dislocation moving with velocity w and (half) Burgers vector b after being
emitted from a shear crack tip at time t = 0, the stress intensity factor of the crack
tip propagating with velocity v2 (v2 ¡w) is bk0(t; w; v2), where k0(t; w; v2) is given
in Eqs. (2.6) and (2.11) for sub-Rayleigh (v2 ¡cR) and intersonic (v2 ¿cs) crack
propagation, respectively. If a dislocation with the Burgers vector d 1 begins moving
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at time t = tw (instead of t =0), then the stress intensity factor is k0(t− tw; w; v2) d 1=2.
Since both  1 in Eq. (2.17) and tw in Eq. (2.20) are functions of w, the stress intensity
factor of the decelerated crack tip can be summed over the entire range of w, from
(v1t∗ + v2(t − t∗))=t to v1. Since stresses in the fundamental solution are not singular
around the decelerated crack tip x = v1t∗ + v2(t − t∗), only the moving dislocation
solution contributes to the stress intensity factor KII of the decelerated crack tip, which
gives KII as

KII(t; v1; v2) = −
∫ (v1t∗+v2(t−t∗))=t

v1

k0(t − tw; w; v2)
1
2

d 1

dw
dw; (2.21)

where

d 1

dw
=

2
�

1
(v1 − w)2 Im

[
U1−

(
1

v1 − w

)]
(2.22)

is obtained from Eq. (2.17).

2.3.1. Deceleration to a sub-Rayleigh crack tip velocity
For an intersonic crack tip velocity v1 decelerating to a sub-Rayleigh one v2, the

substitution of ksub
0 in Eq. (2.6) into Eq. (2.21) and the change of integration variable

to "= 1=(v1 −w) gives the stress intensity factor of the decelerated sub-Rayleigh crack
tip as

KII(t; v1; v2 ¡cR) = −
√

2(cs + v2)
�

�
�(cR + v2)

�2c2
s

�s2v2
2

×PV
∫ +∞

1
(v1−v2)(1−t∗=t)

(v1 + cR)"− 1√
(v1 − v2)(t − t∗)"− t

√
(v1 + cs)"− 1

ssub
−

[
− "

(v1 − v2)"− 1

]
Im[U1−(")] d"; (2.23)

where ssub
− and Im[U1−] are given in Eqs. (2.7) and (2.18), respectively. It is straight-

forward to show that Eq. (2.23) degenerates to the stress intensity factor obtained by
Huang and Gao (2002) when v2 = 0 (i.e., a suddenly arrested intersonic crack). After
lengthy calculations, it can be shown that Eq. (2.23) has the asymptotic limit of a
sub-Rayleigh crack as time t → ∞,

KII(t → ∞) ∼ �∗
√

2
�[v1t∗ + v2(t − t∗)]

1 − v2=cR

ssub
+ (1=v2)

√
1 − v2=cs

; (2.24)

where its right-hand side is exactly the stress intensity factor for a crack tip propagating
with velocity v2 (¡cR) and subjected to a pair of shear forces �∗ at a distance
v1t∗ + v2(t − t∗) behind the crack tip. The expression for ssub

+ is given in Eq. (2.7).
Eq. (2.23) gives a vanishing stress intensity factor at the instant of crack tip decel-

eration, KII(t → t∗ + 0) = 0. As the stress singularity suddenly increases from a weaker
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Fig. 1. The stress intensity factor, KII, normalized by KII(t → ∞), around a crack tip that suddenly de-
celerates from an intersonic velocity, v1, to a sub-Rayleigh velocity, v2. Time t is normalized by the crack
propagation time t∗; Poisson’s ratio $ = 1

3 . The initial crack tip velocity is v1 = 1:25cs, and is decelerated
to (a) v2 = 0:3cs and (b) v2 = 0:7cs.

singularity for an intersonic crack to the square-root one (r−1=2) for a sub-Rayleigh
crack, the corresponding stress intensity factor vanishes at this instant. This implies
that, contrary to the sub-Rayleigh crack growth, an intersonic crack decelerating to
a sub-Rayleigh one displays history dependence. The stress intensity factor of the
decelerated, sub-Rayleigh crack tip does not reach its limit in Eq. (2.24) instanta-
neously. In fact, this is reasonable because both shear and Rayleigh waves are still
trailing behind the crack tip as its velocity suddenly drops to v2 (¡cR) at the instant
t = t∗. The time for Rayleigh wave to catch the decelerated, sub-Rayleigh crack tip is
t = (v1 − v2)=(cR − v2)t∗. It will be interesting to examine the stress intensity factor
after all the waves trailing behind have passed the decelerated, sub-Rayleigh crack tip,
i.e., t ¿ (v1 − v2)=(cR − v2)t∗.

Fig. 1 shows the stress intensity factor KII in Eq. (2.23) versus normalized time t=t∗

for the initial intersonic crack tip velocity v1 = 1:25cs and decelerated sub-Rayleigh
crack tip velocities v2 = 0:3cs and 0:7cs, where KII is normalized by its limit KII(t →
∞) in the right-hand side of Eq. (2.24). The Poisson’s ratio is $ = 1

3 , which gives a
longitudinal wave speed of cl=2cs and a Rayleigh wave speed of cR =0:93cs. The stress
intensity factor KII clearly di3ers from the limit KII(t → ∞). However, immediately
after the Rayleigh wave arrives (t → (v1−v2)=(cR −v2)t∗ +0), KII reaches KII(t → ∞)
instantaneously. Therefore, after an intersonic crack decelerates to a sub-Rayleigh one,
the limit of sub-Rayleigh stress intensity factor in the right-hand side of Eq. (2.24) is
reached after a 5nite delay for all waves trailing behind to pass the decelerated crack
tip.

2.3.2. Deceleration to another intersonic crack tip velocity
For an intersonic crack tip velocity v1 decelerating to another intersonic one v2,

the substitution of k int
0 in Eq. (2.11) into Eq. (2.21) and the change of integration

variable to " = 1=(v1 − w) give the stress intensity factor of the decelerated intersonic
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crack tip

KII(t; v1; v2 ¿cs)

= −
√

2
�

4��l2�̂s2

�
c3

s (cl − v2)
v2

2(v2
2 − c2

R)
f(v2)

(
v2

2 − c2
s

c2
l − v2

2

)q2

×PV
∫ +∞

1
(v1−v2)(1−t∗=t)

[(v1 +cR)"−1][(v1−cR)"−1]√
(cl +v1)"−1

√
(v1 +cs)"−1

√
(v1−cs)"−1

√
(v1−v2)"−1

× s2−[ − "=((v1 − v2)"− 1)]
s2−(0)

{
(cl − v2)

[
t − (v1 − v2)t∗"

(v1 − v2)"− 1

]}q2−1

×Im[U1−(")] d"; (2.25)

where s2−=s2−(0) and Im[U1−] are given in Eqs. (2.12) and (2.18), respectively. After
some lengthy calculations, it can be shown that Eq. (2.25) agrees with the fundamental
solution for intersonic crack propagation (Huang and Gao, 2001) at the limit v2 = v1

(i.e., no change in crack tip velocity). It can also be shown that, as time t → ∞,
Eq. (2.25) has the asymptotic limit of an intersonic crack propagating with velocity
v2:

KII(t → ∞) ∼ 4�∗
√

2
�

�l2�̂s2c4
s√

clv3
2(v2

2 − c2
R)

f(v2)
[

v2
2 − c2

s

(cl + v2)v2

]q2

s2+(0)
s2+(1=v2)

[v1t∗ + v2(t − t∗)]q2−1; (2.26)

where its right-hand side is exactly the stress intensity factor in the fundamental solution
for intersonic crack propagation (Huang and Gao, 2001) except that the pair of point
forces is at a distance v1t∗ + v2(t − t∗) behind the crack tip; f(v2) and s2+=s2+(1=v2)
are given in Eqs. (2.13) and (2.19), respectively.

The stress singularities q1 and q2 around an intersonic crack tip before and after
deceleration are given by

qi =
1
�

tan−1


4

√
1 − v2

i

c2
l

√
v2
i

c2
s
− 1

/(
2 − v2

i

c2
s

)2

 (i = 1; 2)

for corresponding crack tip velocities v1 and v2 [see Eqs. (2.8) and (2.9)]. For q2 ¿q1

(stronger singularity after deceleration), Eq. (2.25) gives a vanishing stress intensity
factor immediately after crack tip deceleration, KII(t → t∗ + 0) = 0. For q2 ¡q1

(weaker singularity after deceleration), Eq. (2.25) approaches in5nity at the same
instant, KII(t → t∗ + 0) → ∞. For q2 = q1 (same singularity), KII remains 5nite
after crack tip deceleration. This implies once again that, contrary to sub-Rayleigh
crack propagation, the stress intensity factor around an intersonic crack tip depends not
only on the instantaneous crack tip velocity but also on the history of crack propaga-
tion because both shear and Rayleigh waves are always trailing behind the intersonic
crack tip.
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Fig. 2. The stress intensity factor, KII, normalized by KII(t → ∞), around a crack tip that suddenly de-
celerates from an intersonic velocity, v1, to a another intersonic velocity, v2. Time t is normalized by the
crack propagation time t∗; Poisson’s ratio $ = 1

3 . The crack tip velocities are (a) v1 = 1:7cs, v2 = 1:1cs; (b)
v1 = 1:7cs, v2 = 1:3cs; (c) v1 = 1:6cs, v2 = 1:25cs.

Fig. 2 shows the stress intensity factor KII in Eq. (2.25) versus normalized time t=t∗

for initial intersonic crack tip velocity v1 = 1:7cs and decelerated crack tip velocity
v2 = 1:1cs and 1:3cs, where KII is normalized by its limit KII(t → ∞) in the right-hand
side of Eq. (2.26). The Poisson’s ratio is $= 1

3 , which gives a longitudinal wave speed
of cl = 2cs and a Rayleigh wave speed of cR = 0:93cs. For v1 = 1:7cs and v2 = 1:1cs,
the decelerated crack tip has a weaker singularity and the stress intensity factor bursts
immediately after crack deceleration. In contrast, the decelerated crack tip has a stronger
singularity for v1 = 1:7cs and v2 = 1:3cs, and the stress intensity factor vanishes at the
instant of crack deceleration. For the case of v1 = 1:6cs and v2 = 1:25cs presented in
Fig. 1c, the decelerated crack tip has an almost identical singularity as the previous
one. Consequently, the stress intensity factor remains 5nite after crack deceleration and
only varies slightly during the deceleration history. That suggests sudden deceleration is
likely to occur when the deceleration causes little distortion of the crack tip singularity
or the energy 1ux into the crack tip. It is also observed that the limit KII(t → ∞) is
only reached asymptotically, i.e., the limiting KII is not at 5nite time since the shear
and Rayleigh waves trailing behind can never catch up with the intersonic crack tip.
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3. Accelerating crack

Consider the same problem as in Section 2 except that the crack tip velocity increases
after a 5nite propagation. At time t=0, a pair of concentrated shear forces of magnitude
�∗ is imposed at the crack tip, which drives the crack to extend along the positive
x-axis at a velocity v1. At a later time t= t∗, the crack suddenly accelerates to a higher
intersonic velocity v2 (¿v1) after an extension of l = v1t∗. Similar to Section 2, this
problem can also be viewed as the superposition of following two sub-problems.

a. Continuous crack propagation at the initial crack tip velocity v1. When v1 ¿cs, this
is the fundamental solution obtained by Huang and Gao (2001). While if v1 ¡cs, it
is the subsonic fundamental solution which was studied by Freund (1972). Although
he only gave the stress intensity factor for a mode I crack, one can get the stress
of a mode II crack in the same manner. The shear stress ahead of the crack tip
(x¿ 0; y=0) in this fundamental solution has the form �F

xy(x; y=0; t)= t−1�1(x=t)=
t−1�1(w), where w=x=t, and the subscript 1 is associated with the crack tip velocity
v1.

b. Negation of the above shear stress in the fundamental solution between the actual
crack tip, x=v1t∗+v2(t−t∗), and the 5ctitious crack tip would continue to propagate
at initial velocity v1, x= v1t. This is achieved by imposing a series of moving point
forces in the appropriate sequence. This is because the above shear stress to be
negated can be written as

�F
xy(x; y = 0; t) =

∫ v1t∗+v2(t−t∗)

v1t
 (x − x′)

1
t
�1

(
x′

t

)
dx′

=
∫ (v1t∗+v2(t−t∗))=t

v1

 (x − wt)�1(w) dw;

which can be viewed as a series of point forces �1(w) dw moving with velocity w,
where  is the Dirac delta function.

3.1. A moving point force on crack faces of a propagating crack tip

An in5nite solid containing a semi-in5nite crack on the negative x-axis is stress free
and at rest everywhere for time t ¡ 0. A pair of unit shear point forces is applied to the
crack tip at time t=0, which drives the crack tip to propagate along the positive x-axis
at an intersonic velocity v2. The unit point forces also move in the same direction at
a lower velocity w (¡v2) on crack faces.

The analysis is identical to the fundamental solution of intersonic crack propagation
(Huang and Gao, 2001) except that the unit point forces are moving. The boundary
conditions become

�yy(x; y = 0; t) = 0; �xy(x¡v2t; y = 0; t) = − (x − wt)H (t);

ux(x¿v2t; y = 0; t) = 0: (3.1)
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Only the stress intensity factor, which is pertinent to the accelerating crack problem,
is given in the following. The stress intensity factor around an intersonic crack tip
is de5ned by kII = lim�→0+

√
2��q2�xy (�; y = 0; t), where the stress singularity q2 is

given in Eq. (2.8). Following the same approach of Huang and Gao (2001), we have
obtained the stress intensity factor around an intersonic shear crack tip subjected to a
pair of unit point forces moving at a lower velocity w (w¡v2) on crack faces

kII = k(t; w; v2); (3.2)

where

k(t; w; v2) = 4

√
2
�
�l2�̂s2

c4
s (cl − v2)

v2
2(v2

2 − c2
R)

f(v2)
(
v2

2 − c2
s

c2
l − v2

2

)q2

× 1√
cl − w

√
v2 − w

s2+(0)
s2+(1=(v2 − w))

[(cl − v2)t]q2−1: (3.3)

Here �l2, �̂s2 and f(v2) are given in Eqs. (2.9) and (2.13), respectively, s2+(�)=s2+(0)
is given by

s2+(�)
s2+(0)

= exp
{
− �

�

∫ +∞

1=(cl−v2)

tan−1 V+(r; v2)
r(r + �)

dr
}

; (3.4)

which is consistent with Eq. (2.19), and V+ is given in Eq. (2.14).

3.2. Shear stress ahead of the crack tip in the fundamental solution

Freund (1972), and Huang and Gao (2001) obtained the fundamental solution for
sub-Rayleigh crack propagation and intersonic crack propagation respectively, i.e., an
initially stationary crack starting to propagate at a velocity v1 (v1 ¡cR or v1 ¿cs,
respectively) once a pair of shear concentrated forces �∗ are applied at time t = 0 to
the initial crack tip (x; y)=(0; 0). Although Freund only gave the stress intensity factor
of mode I crack, one can get the stress of mode II crack in the same way.

3.2.1. Shear stress ahead of the crack tip in the intersonic fundamental solution
The shear stress ahead of the intersonic crack tip in this fundamental solution is

given by

�xy(x¿v1t; y = 0; t) =
1
t
�int

1

(x
t

)
(3.5)

and

�int
1 (w) =

4
�

√
v1

c3
l

�∗
s1+(0)

s1+(1=v1)
c3

s (cl + w)
√
cl − w

√
w2 − c2

s

w3(w2 − c2
R)
√
w − v1

× s1−(0)
s1−(−1=(w − v1))

; (3.6)
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where s1+(0)=s1+(1=v1) is given in Eq. (2.19),
s1−(�)
s1−(0)

= exp
{
− �

�

∫ +∞

1=(cl+v1)

[�
2

+
(�

2
− tan−1 V−(r; v1)

)
H∗(r; v1)

] dr
r(r − �)

}
; (3.7)

functions V− and H∗ are given in Eqs. (2.14) and (2.15), respectively, and once again,
the subscript 1 labels quantities associated with the crack tip velocity v1.

3.2.2. Shear stress ahead of the crack tip in the subsonic fundamental solution
The shear stress ahead of the sub-Rayleigh crack tip in this fundamental solution is

given by

�xy(x¿v1t; y = 0; t) =
1
t
�sub

1

(x
t

)
(3.8)

and

�sub
1 (w) =

�∗

�w3cR
√
w − v1

√
v1cs

�ssub
+ (1=v1)ssub− (−1=(w − v1))

(c2
R − v2

1)v2
1

(w + cR)
1√|w − cs|

×
[

4
clcs

√
c2

l − w2
√
|w2 − c2

s | −
(

2 − w2

c2
s

)2

H (cs − w)

]
H (cl − w);

(3.9)

where

� = 4�l1�s1 − (1 + �2
s1)2; �l1 =

(
1 − v2

1

c2
l

)1=2

; �s1 =
(

1 − v2
1

c2
s

)1=2

ssub
± (�) = exp

{
− 1

�

∫ 1=(cs∓v1)

1=(cl∓v1)
tan−1

×

4c3

s r
2
√

(1 − v1r)2 − c2
s r2

√
c2

l r
2 − (1 − v1r)2

cl[2c2
s r2 − (1 ± v1r)2]2


 dr

r ± �


 : (3.10)

It is worthwhile to note that the stress decreases gradually with the increasing of w,
changes its sign at w = cR, tends to negative in5nity at w = cs, then jumps back to a
positive value when w exceeds cs.

3.3. Stress intensity factor around an accelerating crack tip

The accelerating crack solution can be obtained from the fundamental solution for
intersonic crack propagation (Huang and Gao, 2001) by negating the shear stress from
the accelerating crack tip, x = v1t∗ + v2(t − t∗), to the crack tip that would continue
to propagate at initial velocity v1; x = v1t. As discussed before, this shear stress in the
fundamental solution has the form t−1�1(x=t), which can be equivalently represented by
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a series of point forces �1(w) dw moving with velocity w, where w= x=t. The range of
w for negating the shear stress is from v1 to (v1t∗ + v2(t− t∗))=t, corresponding to two
crack tips discussed above. For a given velocity w in this range, the time tw at which
the point force �1(w) dw arrives at the accelerated crack tip location x=v1t∗+v2(t−t∗)
is also given by Eq. (2.20).

For a pair of unit shear point forces moving with velocity w on crack faces, the stress
intensity factor of the crack tip propagating with an intersonic velocity v2 (v2 ¿w)
is k(t; w; v2), where k(t; w; v2) is given in Eq. (3.3). If a pair of shear point forces
�1(w) dw begins moving at time t=tw (instead of t=0), then the stress intensity factor is
k(t−tw; w; v2)�1(w) dw. The values of �1 are given in Eqs. (3.6) and (3.9) for intersonic
and subsonic crack propagation, respectively. Since both �1 in Eqs. (3.6) and (3.9) and
tw in Eq. (2.20) are functions of w, the stress intensity factor of the accelerated crack
tip can be summed over the entire range of w, from v1 to (v1t∗ + v2(t − t∗))=t. Since
stresses in the fundamental solution are not singular around the accelerated crack tip
x = v1t∗ + v2(t − t∗), only the moving point-force solution contributes to the stress
intensity factor KII of the accelerated crack tip, which gives KII as

KII(t; v1; v2) =
∫ v1

(v1t∗+v2(t−t∗))=t
k(t − tw; w; v2)�1(w) dw: (3.11)

The substitution of k, �1 and tw in Eqs. (3.3), (3.6), (3.9) and (2.20) into Eq. (3.11)
and the change of integration variable to "= 1=(w− v1) give the stress intensity factor
presiding over an accelerated intersonic or sub-Rayleigh crack tip as

KII(t; v1; v2) =

√
2
�

4�l2�̂s2
c4

s (cl − v2)
v2

2(v2
2 − c2

R)
f(v2)

(
v2

2 − c2
s

c2
l − v2

2

)q2

×
∫ +∞

1
(v2−v1)(1−t∗=t)

1√
(cl − v1)"− 1

√
(v2 − v1)"− 1

s2+(0)
s2+[ "

(v2−v1)"−1 ]

{
(cl − v2)

[
t − (v2 − v1)t∗"

(v2 − v1)"− 1

]}q2−1

�1

(
v1 +

1
"

)
d"
"

; (3.12)

where functions f and s2+=s2+(0) are given in Eqs. (2.13) and (3.4), and the values
of �1 are assigned in Eqs. (3.6) and (3.9) for the intersonic and sub-Rayleigh cases,
respectively. After some lengthy calculations, it can be shown that Eq. (3.12) agrees
with the fundamental solution for intersonic crack propagation (Huang and Gao, 2001)
at the limit v2 = v1, and also with the asymptotic limit in Eq. (2.26) as time t → ∞.

The stress intensity factor in Eq. (3.11) at the instant of crack tip acceleration (t →
t∗+0) is zero, 5nite, and in5nite depending on whether the stress singularity of acceler-
ated crack tip is stronger than (q2 ¿q1), the same as (q2=q1), or weaker than (q2 ¡q1)
that before acceleration. The same asymptotic behavior has also been observed in Sec-
tion 2 for a decelerated crack tip. When v1 is sub-Rayleigh, the square-root singularity
(q1 = 1

2 ) of stress always prevails. Accordingly, the stress intensity factor at the instant
of crack tip acceleration from a sub-Rayleigh to an intersonic speed always vanishes
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Fig. 3. The stress intensity factor, KII, normalized by KII(t → ∞), around a crack tip that suddenly accel-
erates from an intersonic velocity, v1, to another intersonic velocity, v2. Time t is normalized by the crack
propagation time t∗; Poisson’s ratio $= 1

3 . The initial crack tip velocity is v1 = 1:25cs, the crack is suddenly
accelerated to (a) v2 = 1:4cs and (b) v2 = 1:7cs.
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Fig. 4. The stress intensity factor, KII, normalized by KII(t → ∞), around a crack tip that suddenly accelerates
from a sub-Rayleigh velocity, v1, to an intersonic velocity, v2. Time t is normalized by the crack propagation
time t∗; Poisson’s ratio $ = 1

3 . The initial velocity is v1 = 0:9cs, and is accelerated to (a) v2 = 1:1cs and
(b) v2 = 1:9cs.

except for the case of v2 =
√

2cs. This implies once again that, contrary to sub-Rayleigh
crack growth, intersonic crack propagation has the history dependence.

Figs. 3 and 4 show the stress intensity factor KII in Eq. (3.12) versus normalized
time t=t∗, where KII is normalized by its limit KII(t → ∞) in the right-hand side of Eq.
(2.26). The Poisson’s ratio is $= 1

3 , which gives a longitudinal wave speed of cl = 2cs

and a Rayleigh wave speed of cR =0:93cs. Fig. 3 refers to the case of crack acceleration
from an intersonic speed v1 = 1:25cs to a di3erent intersonic speed. Two calculations
are carried out for v2 = 1:4cs and v2 = 1:7cs. For the 5rst case (Fig. 3a), the crack
tip singularity increases after the velocity jump, so the corresponding stress intensity
factor rises, 5rst rapidly and then gradually, from zero to unity. For the second case
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(Fig. 3b), the crack tip singularity decreases after the velocity jump, the corresponding
stress intensity factor declines, 5rst rapidly and then gradually, from in5nity to unity.
After sudden velocity jump, the steady-state intersonic solution corresponding to v2

cannot be fully achieved in a 5nite time period.
When a crack travels at a subsonic speed, the shear wave front induced by the sud-

den application of a pair of tangential point forces travels ahead of the crack tip. If
that (previously subsonic) crack suddenly accelerates to an intersonic cracking speed,
one would expect distinct transitions at two critical instants. The 5rst instant happens
right at the velocity switch, a sudden drop of the stress singularity (from − 1

2 to −q),
leading to a rapid declination of stress. The second critical instant occurs when the
intersonic crack catches up with the shear wave front generated by the point forces.
The subsonic stress solution, as described in Eq. (3.9), includes a jump in the inte-
grand at shear wave speed, and consequently a sudden slop change in the shear stress
response. Moreover, due to the singularity in Eq. (3.9), the stress intensity factor will
decrease to negative in5nity when the crack catches up with the shear wave. To vi-
sualize the anticipated changes in the crack tip stress intensity factor, we plot in Fig.
4 the stress intensity factor history of a sub-Rayleigh crack with an initial tip velocity
v1=0:9cs accelerating suddenly to the crack tip velocity of v2=1:1cs (Fig. 4a) and 1:9cs

(Fig. 4b). The former case corresponds to the cross-over of the velocity forbidden zone
from the Rayleigh wave speed to the shear wave speed; while the latter simulates the
velocity jump from just under the Rayleigh wave speed to just under the longitudinal
wave speed. For both cases, the crack tip in the previous sub-Rayleigh regime has a
stronger singularity (r−1=2), so the stress intensity factors are unbounded immediately
after the crack acceleration. The second critical instances for two cases are t = 2t∗

when v2 = 1:1cs, and t = (10=9)t∗ when v2 = 1:9cs, as evidenced in Figs. 4a and b,
respectively. One observes from Figs. 4a and b that the sign of shear stress changes
after the velocity jump. The crack tip is 5rst sheared in one direction, then sheared
in the opposite direction, due to the intersonic crack catches up with, then breaks
away from the shear wave front generated by the point forces. In contrast to a mode
I crack, a mode II crack can be driven to propagate by either positive or negative
shear stress. Therefore, the sudden velocity change of a shear crack confronts no in-
surmountable barrier. That observation may shed some light to the cross-over of the
velocity forbidden zone between the Rayleigh wave and the shear wave speed. It is
also observed that the limit KII(t → ∞) is only reached asymptotically, i.e., not at any
5nite time since the shear and Rayleigh waves trailing behind need a long time to fade
away.

4. Concluding remarks and discussion

Motivated by the recent progress on intersonic crack growth that undergoing abrupt
changes in crack tip velocity, the present work presents analytical solutions for a
sub-Rayleigh or an intersonic crack either accelerating or decelerating to a di3erent
(sub-Rayleigh or intersonic) cracking speed. Four cases are examined. The case of
crack acceleration from a sub-Rayleigh speed to an intersonic speed is explored to
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delineate two situations: (1) crack speeding across the forbidden velocity zone from
the Rayleigh wave speed to the shear wave speed, as shown in Fig. 4a; and (2) the
observed phenomenon of crack speed jump from just below the Rayleigh wave speed
to just below the longitudinal wave speed (Rosakis et al., 1999; Needleman, 1999;
Needleman and Rosakis, 1999; Abraham and Gao, 2000; Gao et al., 2001), as shown
in Fig. 4b. The case of crack deceleration from an intersonic speed to the sub-Rayleigh
regime features the catch up of the trailing waves, namely the sub-Rayleigh solution is
recovered when the trailing shear wave and Rayleigh surface wave catch up with the
decelerated crack tip. The cases of an intersonic crack deceleration or acceleration to
another intersonic crack are shown to be extensively history dependent. The e3ect of
previous intersonic crack propagation history cannot be erased over a 5nite time span.
This is the fundamental di3erence between sub-Rayleigh and intersonic cracks.

For the subsonic case, the method of superposition can be exercised at any time.
For a crack propagating at a subsonic speed, the stress intensity factor does not depend
on the history if the crack is loaded by time-independent force (Freund 1972, 1990).
Regardless of the variation in crack speeds, the elastic 5eld emitted from the crack
tip after the velocity change is always self-similar. Unfortunately, the recent works by
Huang and Gao (2002), as well as our calculations, show the strong history dependence
of the stress intensity factor for an intersonic crack.

A propagating crack di3ers from a moving dislocation since the latter possesses
inertia. Accordingly, an in5nite amount of time is required for a moving dislocation,
subsonic or intersonic, to approach equilibrium. In this aspect, a sub-Rayleigh crack is
very di3erent from a subsonic dislocation. However, in the intersonic regime, cracks
and dislocations show similar behavior in that they require time to change from one
steady state to another.

For a crack to change its speed continuously, Broberg (1999b) argued that the
method of superposition might be used repeatedly. One then might expect that the
present solution could serve as a building block for the general crack propagating his-
tory in the intersonic or sub-Rayleigh ranges. However, a distinction has to be made
between the solutions of the 5rst and the subsequent velocity jumps. When the crack
changes its speed for the 5rst time, the calculation such as proceeded in the present
paper is facilitated by the property of self-similarity, as observed in Broberg (1999b).
Even for this case, the analytical result obtained is rather intricate so that the numerical
evaluation has to be invoked to observe its property. After the 5rst change of speed,
the elastic 5eld is no longer self-similar. That would lead to a more diPcult, if not
impossible, process to obtain a solution of analytical feature.
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