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Abstract

Current methodologies used for the inference of thin film stress through curvature measurements are strictly restricted to stress and curvature
states which are assumed to remain uniform over the entire film/substrate system. By considering a circular thin-film/substrate system subject to
arbitrarily non-uniform misfit strain distributions, we derive relations between the film stresses and the misfit strain, and between the plate
system’s curvatures and the misfit strain. These relations feature a “local” part which involves a direct dependence of the stress or curvature
components on the misfit strain at the same point, and a “non-local” part which reflects the effect of misfit strain of other points on the location of
scrutiny. Most notably, we also derive relations between components of the film stress and those of system curvatures which allow for the
experimental inference of such stresses from full-field curvature measurements in the presence of arbitrary non-uniformities. These relations also
feature a “non-local” dependence on curvatures making full-field measurements of curvature a necessity for the correct inference of stress. Finally,
it is shown that the interfacial shear tractions between the film and the substrate are related to the gradients of the first curvature invariant and can

also be inferred experimentally.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Various substrates formed of suitable solid-state materials
may be used as platforms to support various thin film structures.
Integrated electronic circuits, integrated optical devices and
optoelectronic circuits, micro-electro-mechanical systems de-
posited on wafers, three-dimensional electronic circuits, sys-
tems-on-a-chip structures, lithographic reticles, and flat panel
display systems are examples of such thin film structures inte-
grated on various types of plate substrates.

The above described thin film structures on substrates are
often made from a multiplicity of fabrication and processing
steps (e.g., sequential film deposition, thermal anneal and etch
steps) and often experience stresses caused by each of these
steps. Examples of known phenomena and processes that build
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up stresses in thin films include, but are not limited to, lattice
mismatch, chemical reaction, doping by e.g., diffusion or im-
plantation, rapid deposition by evaporation or sputtering and of
course thermal treatment (e.g., various thermal anneal steps).
The film stress build up associated with each of these steps often
produces undesirable damage that may be detrimental to the
manufacturing process because of its cumulative effect on
process “yield” [1]. Known problems associated to thermal
excursions, in particular, include stress-induced film cracking
and film/substrate delamination resulting during uncontrolled
wafer cooling which follows the many anneal steps.

The intimate relation between stress-induced failures and
process yield loss makes the identification of the origins of stress
build-up, the accurate measurement and analysis of stresses, and
the acquisition of information on the spatial distribution of
stresses a crucial step in designing and controlling processing
steps and in ultimately improving reliability and manufacturing
yield. X-ray diffraction, Raman spectroscopy and CGS (Coherent
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Gradient Sensing) interferometry have been used to measure the
spatial distribution of stresses (or strains) [2].

Stress changes in thin films following discrete process steps or
occurring during thermal excursions may be calculated in prin-
ciple from changes in the film/substrate systems curvatures or
“bow” based on analytical correlations between such quantities.
Early attempts to provide such correlations are well documented
[3]. Various formulations have been developed for this purpose
and most of these are essentially extensions of Stoney’s ap-
proximate plate analysis [4].

Stoney used a plate system composed of a stress bearing thin
film, of thickness /¢, deposited on a relatively thick substrate, of
thickness /%, and derived a simple relation between the curvature,
K, of the system and the stress, a(f), of the film as follows:
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(1.1)

In the above the subscripts “f” and “s” denote the thin film
and substrate, respectively, and £ and v are the Young’s mo-
dulus and Poisson’s ratio. Eq. (1.1), known as Stoney formula,
has been extensively used in the literature to infer film stress
changes from experimental measurement of system curvature
changes [3].

Stoney’s formula was derived for an isotropic “thin” solid
film of uniform thickness deposited on a much “thicker” plate
substrate based on a number of assumptions. Stoney’s
assumptions include the following: (1) both the film thickness
h¢ and the substrate thickness /g are uniform and sy << hy < R,
where R represents the characteristic length in the lateral di-
rection (e.g., system radius R shown in Fig. 1); (2) the strains
and rotations of the plate system are infinitesimal; (3) both the
film and substrate are homogeneous, isotropic, and linearly
elastic; (4) the film stress states are in-plane isotropic or equi-
biaxial (two equal stress components in any two, mutually

Fig. 1. A schematic diagram of the thin film/substrate system, showing the
cylindrical coordinates (r, 6, z).

orthogonal in-plane directions) while the out-of-plane direct stress
and all shear stresses vanish; (5) the system’s curvature com-
ponents are equi-biaxial (two equal direct curvatures) while the
twist curvature vanishes in all directions; and (6) all surviving
stress and curvature components are spatially constant over the
plate system’s surface, a situation which is often violated in
practice.

The assumption of equi-biaxial (K =kK,,=K,Ky=K)=0)
and spatially constant curvature (kx independent of position) is
equivalent to assuming that the plate system would deform
spherically under the action of the film stress. If this assumption
were to be true, a rigorous application of Stoney’s formula
would indeed furnish a single film stress value. This value
represents the common magnitude of each of the two direct
stresses in any two, mutually orthogonal directions (i.e.,
axx=ayy=a(f), Oy =0y, =0, o® independent of position).
This is the uniform stress for the entire film and it is derived
from measurement of a single uniform curvature value which
fully characterizes the system provided the deformation is
indeed spherical.

Despite the explicitly stated assumptions of spatial stress and
curvature uniformity, the Stoney formula is often, arbitrarily,
applied to cases of practical interest where these assumptions
are violated. This is typically done by applying Stoney’s for-
mula pointwise and thus extracting a local value of stress from a
local measurement of the curvature of the system. This ap-
proach of inferring film stress clearly violates the uniformity
assumptions of the analysis and, as such, its accuracy as an
approximation is expected to deteriorate as the levels of cur-
vature non-uniformity become more severe.

Following the initial formulation by Stoney, a number of
extensions have been derived by various researchers who have
relaxed some of the other assumptions (other than the
assumption of uniformity) made by his analysis. Such
extensions of the initial formulation include relaxation of the
assumption of equi-biaxiality as well as the assumption of small
deformations/deflections. A biaxial form of Stoney, appropriate
for anisotropic film stresses, including different stress values at
two different directions and non-zero, in-plane shear stresses,
was derived by relaxing the assumption of curvature equi-
biaxiality [3]. Related analyses treating discontinuous films in
the form of bare periodic lines [5] or composite films with
periodic line structures (e.g., bare or encapsulated periodic
lines) have also been derived [6—8]. These latter analyses have
also removed the assumption of equi-biaxiality and have al-
lowed the existence of three independent curvature and stress
components in the form of two, non-equal, direct components
and one shear or twist component. However, the uniformity
assumption of all of these quantities over the entire plate system
was retained. In addition to the above, single, multiple and
graded films and substrates have been treated in various “large”
deformation analyses [9—12]. These analyses have removed
both the restrictions of an equi-biaxial curvature state as well as
the assumption of infinitesimal deformations. They have al-
lowed for the prediction of kinematically nonlinear behavior
and bifurcations in curvature states. These bifurcations are
transformations from an initially equi-biaxial to a subsequently
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biaxial curvature state that may be induced by an increase in film
stress beyond a critical level. This critical level is intimately
related to the systems aspect ratio, i.e., the ratio of in-plane to
thickness dimension and the elastic stiffness. These analyses also
retain the assumption of spatial curvature and stress uniformity
across the system. However, they allow for deformations to
evolve from an initially spherical shape to an energetically
favored shape (e.g., ellipsoidal, cylindrical or saddle shapes)
which features three different, still spatially constant, curvature
components [13].

None of the above-discussed extensions of Stoney’s method-
ology have relaxed the most restrictive of Stoney’s original
assumption of spatial uniformity which does not allow either film
stress or curvature components to vary across the plate surface.
This crucial assumption is often violated in practice since film
stresses and the associated system curvatures are non-uniformly
distributed over the plate area. Huang and Rosakis [14] and
Huang et al. [15] have recently made progress to remove the two
restrictive assumptions of the Stoney analysis relating to spatial
uniformity and equi-biaxiality. They have studied the cases of thin
film/substrate systems subject to non-uniform but axisymmetric
temperature distribution 7(r) and misfit strain ¢,,(7), respectively.
Their results show that the relations between film stresses and
substrate curvatures feature not only a “local” part which involves
a direct dependence of stresses on curvatures at the same point,
but also a “non-local” part which reflects of the effect of cur-
vatures at other points on the location of scrutiny. The “non-local”
effect comes into play in the axisymmetric analysis via the
average curvature in the thin film. The most recent and perhaps
the most comprehensive analysis to date of non-uniformities can
be found in the work of Huang et al. [15] where the most general
case of temperature induced spatial non-uniformities was
analyzed. In this case the cause of film and substrate stresses as
well as system curvatures was an “arbitrary” temperature
distribution 7{(r,0) acting on the system. The results of this gene-
ralization are substantially much more complicated than those of
the axisymmetric case 7(r) but have a very similar structure. As
perhaps expected they can be decomposed to a “local” or “Stoney-
like” part, and a non-local part. The first term of the non-local part
is identical in structure to that of the axisymmetric prediction
while the rest is given in terms of an infinite series of terms of
diminishing strength.

The generalization of the axisymmetric misfit strain ¢&,,(r) to
an arbitrarily varying misfit strain €,,(7,0) is the subject of the
present investigation. Indeed, the main purpose of the present
paper is to remove the two restrictive assumptions of the Stoney
analysis relating to stress and curvature spatial uniformity and to
in-plane isotropic equi-biaxiality for the general case of a thin
film/substrate system subject to an arbitrarily varying misfit
strain distribution ¢,,(r,6) whose presence will create an arbi-
trary stress and curvature field as well as arbitrarily large stress
and curvature gradients. It should be noted that although
spatially varying, this misfit strain is locally assumed to be in-
plane isotropic. As we will see later, and as obvious from the
axisymmetric case, this does not imply that the stress state is
also in-plane isotropic. Our goal is to relate film stresses and
system curvatures to the misfit strain distribution and to ulti-

mately derive a relation between the film stresses and the
system curvatures for spatially varying, in-plane isotropic misfit
strain distributions. Such a relation would allow for the accurate
experimental inference of accumulated film stress from full-
field curvature measurements which may take place following
various processing steps (on-line monitoring).

Although many important features of the two solutions,
corresponding to 7(r,0) or &,,(r,0) non-uniformities are expected
to be similar, some fundamental differences between these two
situations are also anticipated. Perhaps the easiest way to
rationalize this from a physical point of view is to recall that for
the former case the driving force for system curvature is the
temperature distribution while for the latter case it is the misfit
strain between film and substrate. In the former case, both the
film and the substrate are each subjected to 7(r,0) and even if
not bonded they independently develop non-uniform deforma-
tion and stress states. These states need to be further recon-
sidered due to eventual film/substrate bonding (continuity of
displacements across the interface). In the latter case however, it
is the film misfit strain which induces the system deformations
and the film and substrate stress. In the limit of zero film
thickness the system and substrate stresses and deformations
vanish. This is not true however when instead a non-uniform
temperature is prescribed. When the limit is considered in this
case the bare substrate still involves non-zero stresses and
deformations. As a result of this there seems to be “additional”
interactions and coupling between the film and the substrate
which are only active when a non-uniform temperature film is in
existence. The practical implications of the above are as fol-
lows: during processes, such as various anneal or cooling steps
when the temperature varies with time and across a film/
substrate system, the former analysis is appropriate and should
be used for the in-situ, real-time monitoring of film stress,
through full-field curvature measurement. However, after the
end of a process when the temperature field has equilibrated to a
uniform state, the latter analysis is of relevance. Here the goal is
the measurement of permanent (residual) stresses which have
been locked in the film through the process and its non-uni-
formities. The latter analysis is also relevant for the study of
non-uniform stress build up or relieve in cases where tempe-
rature is not involved. These include certain types of film
deposition, etching or polishing process all of which can be
monitored by means of on-line full field curvature measurement
methods.

2. Governing equations

Consider a thin film of thickness /4 which is deposited on a
circular substrate of thickness Ay and radius R such that
hy<<hg<<R. A thin film is subject to arbitrary misfit strain
distribution &™(7,0), where r and 6 are the polar coordinates
(Fig. 1). The Young’s modulus and Poisson’s ratio of the film
and substrate are denoted by Ey, vy, E and vy, respectively. The
substrate is modeled as a plate since it can be subjected to
bending, and 4y << R. The thin film is modeled as a membrane
which cannot be subject to bending due to its small thickness
he < b,
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Let u(” and u’ denote the displacements in the radial () and
01rcumferent1al (O)fdlrectlons The strains in the thln (ff)llm are
&y = °; . €09 = ”f + 1200 and vy, = 12 ﬁ;ﬁ M. The
strains in the ﬁlm are related to the stresses and the misfit
strain &” by &5 = 7 [(1 4 v)a;=vroudy] + "0y via the linear

elastic constitutive model, which can be equivalently written as

Er auﬁf) u(f) 1 8u9
"o - —(1 " 5
g o N\ T e (1 +vr)e

Ey oul” u,(.f) 16ué)
— - m 2.]
700 l—v%lvf 6r+r+ 00 ~(1+vr)e (2.1)
o Ef¢ l@ug) +8u0 _ﬁ
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The membrane forces in the thin film are
N},(f> = hf(Trr,Ne(f) = hf()’gg,Ng) = hto,g. (2.2)

It is recalled that, for uniform misfit strain distribution
&" =constant, the normal and shear stresses across the thin film/
substrate interface vanish except near the free edge r=R, i.c.,
0..=0,.=0,4=0 at z=h,/2 and r<R. For non-uniform misfit
strain distribution &” = &"(r,0), the shear stress o, and o, at the
interface may not vanish anymore, and are denoted by 7, and 7y,
respectively. It is important to note that the normal stress
traction o, still vanishes (except near the free edge r=R)
because the thin film cannot be subject to bending. The
equilibrium equations for the thin film, accounting for the effect
of interface shear stresses 7, and 1y, become
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The substitution of Egs. (2.1) and (2.2) into (2.3) yields the

following governing equations for u{”,u{" 1, and 7,

7. =0,

(2.3)

—Tp = 0.
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Let u® and u$ denote the displacements in the radial () and
circumferential (@) directions at the neutral axis (z=0) of the
substrate, and w the displacement in the normal (z) direction. It
is important to consider w since the substrate can be subject to

bending and is modeled as a plate. The strains in the substrate
are given by

B 6u§s) B o*w
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oy — 10wy (1ow 107w 25
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The stresses in the substrate can then be obtained from the linear
elastic constitutive model as
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The forces and bending moments in the substrate are
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The shear stresses 7,.and 7, at the thin film/substrate interface
are equivalent to the distributed forces 7, in the radial direction
and 7, in the circumferential direction, and bending moments
(hs/2)7, and (hs/2)7, applied at the neutral axis (z=0) of the
substrate. The in-plane force equilibrium equations of the
substrate then become
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The out-of-plane moment and force equilibrium equations are
given by

oM, M —M, laM,
ar r s r "+ Qr =9,
oM,y 2 41 1 aMg L0 0, (2'10)
Ep M, PRET 0 T()
aQ; Qi 16Q9
= 2.11
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where O, and Qy are the shear forces normal to the neutral axis.
The substitution of Eq. (2.7) into Eq. (2.9) yields the following
governing equations for #¢” and u§” (and 1)

1+l 62u§;)
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Elimination of Q, and Qy from Egs. (2.10) and (2.11), in
conjunction with Eq. (2.8), give the following governing
equation for w (and 7)

6(1-?) (o1, 1, 107

2 2 _ s r ry--2v

V(Vw) = E 6r+r+r60 , (2.13)
where V2 = mz + 1 p ar rl—z —;;2.

The continuity of displacements across the thin film/
substrate interface requires

£) (s _l’ls ow (f)

w! =S = w5 g
Egs. (2.4) and Please split and link these to Eqgs. (2.12)—(2.14)
constitute seven ordinary differential equations for seven
variables, namely u(", u{", ul®, u$’, w, 7, and 7,. We discuss
in the following how to decouple these seven equations under
the limit A/ hy << 1 such that we can solve u®, u first, then w,
followed by u(f) and u{, and finally 7, and 7.

(1) Elimination of 7, and 7y from force equilibrium equations
(2.4) for the thin film and (2.12) for the substrate yields two
equations for u™, u$”, 1 and u$. For he/hy<< 1, u" and uff’
disappear in these two equations, which become the following

governing equations for > and u’ only,
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The substrate displacements »® and

(2.15)
lazu(()
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are on the order of &/ hs.

(ii) Elimination of u{" and u{ from the continuity condition
(2.14) and equilibrium equation (2.4) for the thin film gives 7,
and 1, in terms of ¥, 4§ and w (and &™).

(iii) The substitution of the above 7, and 74 into the moment
equilibrium Eq. (2.13) yields the governing equation for the
normal displacement w. For h¢/ hy < 1, this governing equation
takes the form

thf 1- v

-6 s 2m
1- VfEhZV

Vi(Viw) = (2.16)
This is a biharmonic equation which can be solved analytically.
The substrate displacement w is on the order of hg/ hs.

(iv) The displacements u” and % in the thin film are
obtained from Eq. (2.14), and they are also on the same order
hel hg as u®, u$) and w. The leading terms of the interface shear
stresses 7, and 7y are then obtained from Eq. (2.4) as

Erh; 0¢™ Erhe 1 0¢™

= 1*Vf or ’ 1*Vfl" 69 ' (217)

These are remarkable results that hold regardless of boundary
conditions at the edge r=R. Therefore the interface shear
stresses are proportional to the gradients of misfit strain. For
uniform misfit strain the interface shear stresses vanish.

We expand the arbitrary non-uniform misfit strain distribution
&"'(r,0) to the Fourier series,

r@zis cosn@—&—z
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wheree” () (r ) =+ Ozﬂ &"(r, 0)d0.e"™ (r) = L [T & (r, 0)cosnOdl

(n=1) and P (r) = OZW &"(r, 0)sinn0do (n= 1). Without losing
generality, we focus on the cos n6 term here. The corresponding
displacements can be expressed as

r)sinnb, (2.18)
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Eq. (2.15) then gives two ordinary differential equations for u,™ and

u$™, which have the general solution
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where 4q and D, are constants to be determined, and we have used
the condition that the displacements are finite at the center #=0.

E(‘h{ 1+ Vg 1 }’Sm(”)
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(2.20)
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The normal displacement w is obtained from the biharmonic
Eq. (2.16) as

W(n) = A1Vn+2 + Bll’ﬂ

31-V2 Evhe R r
= s n nmn d n+1mn d
e [ e [

h2
+0(h2)

where A; and B, are constants to be determined, and we have
used the condition that the displacement w is finite at the center
r=0.

(2.21)

3. Boundary conditions

The first two boundary conditions at the free edge r=R
require that the net forces vanish,

NO4NY =0 and NJ+N§ =0 at r=R, (3.1)
which give 4y and D, as
Erhs 1-vs 1 R st mn) h
= 1=y Eohy R2 /0 n e (n)dn + 0 i
. (32

thf1v%n+1/R m(n 2
Dy = — i I w10 (N + O
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under the limit ¢/ hy << 1. The other two boundary conditions at
the free edge »=R are the vanishing of net moments, i.e.,

h 10 h
SN0 = _s
M, 7 0 and O,— 220 (M,g 7 N,y )
=0 at r=R, (3.3)
which give 4, and B, as
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It is important to point out that the boundary conditions can
also be established from the variational principle [12]. The total
potential energy in the thin film/substrate system with the free
edge at r=R is

R 2m Btbhg
= / rdr / do / Udz,
0 0 b
oU _

where U is the strain energy density which gives £

O&pyr
ggf)’o = gy and ‘ZIU) = 0,9. For constitutive relations in Egs. (2.1)

and (2.6), we obtain
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where E and v take their corresponding values in the thin film
(i.e., Er and vy for h—; + he>z> —) and in the substrate (i.e., E

and vy for % 222*%). For the displacement fields in Section 2
and the associated strain fields, the potential energy I in Eq.
(3.5) becomes a quadratic function of parameters 4., Dy, A; and
B,. The principle of minimum potential energy requires
ol oll oll oIl

=0 — 3.7
04y " 0Dy "04; 0B, (37)

It can be shown that, as expected in the limit /¢/ h; < 1, the above
four conditions in Eq. (3.7) are equivalent to the vanishing of net
forces in Eq. (3.1) and net moments in Eq. (3.3).

4. Thin-film stresses and substrate curvatures

We provide the general solution that includes both cosine
and sine terms in this section. The substrate curvatures are

Ky =

0w low 1 6*w 0 (1 aw) (4.1)

e T A T o\ a0

r or
The sum of substrate curvatures is related to the misfit strain by
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where ¢ = f [ €"(n, p)dA is the average misfit strain over

the entire area A of the thm ﬁlm d4= ndndgo, and &” is also
related to &™® by &” fo nec( (n)dn. The difference
between two curvatures, k,,.— Kgg, and the twist k4 are given by
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The stresses in the thin film are obtained from Eq. (2.1).
Specifically, the sum of stresses o't + @y is related to the misfit
strain by

(4.5)

f Er
o) + op = = (—2¢").
The difference between stresses, o'l —gf), and shear stress o'l;
are given by
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For uniform misfit strain distribution &” =constant, the in-
terface shear stresses in Eq. (2.17) vanish. The curvatures in the
substrate obtained from Egs. (4.2)—(4.4)] become

8

my
o) = a< ) = éo) =——\(—¢ ),aﬁo) =0.

For this special case only, both stress and curvature states
become equi-biaxial. The elimination of misfit strain &” from the

above two equations yields a simple relation ¢(f) = 6(1E “f i s

which is exactly the Stoney formula in Eq. (1.1), and it has been
used to estimate the thin-film stress o from the substrate curvature
K, if the misfit strain, stress and curvature are all constant and if the
plate system shape is spherical. In the following, we extend such a
relation for arbitrary non-axisymmetric misfit strain distribution.

5. Extension of Stoney formula for non-axisymmetric misfit
strain distribution

The stresses and curvatures are all given in terms of misfit
strain in the previous section. We extend the Stoney formula for

arbitrary non-uniform and non-axisymmetric misfit strain
distribution in this section by establishing the direct relation
between the thin-film stresses and substrate curvatures.

We first define the coefficients C,, and S, related to the
substrate curvatures by

;/] n
_?//(;crr—k;cgo)(ﬁ) cosngpdA,
A
S, — //( + xn) (1) sinnpda
n_TFRZ Kyr Koo R SmnedA,
A

where the integration is over the entire area A of the thin film, and
d4=ndnde. Since both the substrate curvatures and film stresses
depend on the misfit strain &”, elimination of misfit strain gives
the film stress in terms of substrate curvatures by

(5.1)
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where . + Kgg = Co =

— [[ (ki + K09)dA s the average
Y,

curvature over entire area 4 of the thin film. Egs. (5.2)—(5.4)
provide direct relations between individual film stresses and
substrate curvatures. It is important to note that stresses at a point
in the thin film depend not only on curvatures at the same point
(local dependence), but also on the curvatures in the entire
substrate (non-local dependence) via the coefficients C, and S,,.

The interface shear stresses 7, and 7, can also be directly
related to substrate curvatures via

_ Eshg [ 0 > . r\nl
T, = 617 o (K + K00)— z )(Cycosnd + S,sinn0) (R) ,
(5.5)

_ Eshg — Lo !
79 = 6(l—v§) ~30 (K/r + Kpp) + ﬁz n(n + 1)(C,sinn0—S,cosn0) (ﬁ) .

(5.6)

This provides a way to estimate the interface shear stresses
from the gradients of substrate curvatures. It also displays a non-
local dependence via the coefficients C,, and S,,.

Since interfacial shear stresses are responsible for promoting
system failures through delamination of the thin film from the
substrate, Egs. (5.5) and (5.6) have particular significance. They
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show that such stresses are related to the gradients of k., + kg and
not to its magnitude as might have been expected of a local,
Stoney-like formulation. The implementation value of Egs. (5.5)
and (5.6) is that it provides an easy way of inferring these special
interfacial shear stresses once the full-field curvature information
is available. As a result, the methodology also provides a way to
evaluate the risk of and to mitigate such important forms of
failure. It should be noted that for the special case of spatially
constant curvatures, the interfacial shear stresses vanish as is the
case for all Stoney-like formulations described in the introduction.
It can be shown that the relations between the film stresses and
substrate curvatures given in the form of infinite series in Egs. (5.2)—
(5.4) can be equivalently expressed in the form of integration as

€)_ () _ _ Eths
P70 = 61 + vp)
%Fminux (%7}{“’7 40_6)
3
{l -2 4z cos(p—0) +1 rz]
(5.7)

d4

1
X 4(K;FK99)*W/ (K + 1c00)
y

Erh, 11 . ﬂFﬂ ar £7ﬂ7 -0
(f) f 4K,-()_§W //(KW+K()U) Rt (R o ? )ﬁq BdA ’
™ J {lfz%cos(qo*(?) + WR_:]

(5.8)

70 = 61 1 vp)

2
0 4 g __ Eshs
o) + g = oh (quv.)

1- .
Ky + Koo + ——— (K/r + Koo Kpr T Kop)

1+

R 0
1 R3// Kn + K0o) R p]us(R R 9 ) 5
+ Vs T l 2 Frcos(p—0) + %]

(5.9)

where functions Fiyinus, Fenear and Fpjys are given by

Frninas (71511, @1) = =111 (6 4+ 95+ rin}) + 11 (2 + 95 + 611} + 6717 )cosp

=iy (3 + 3rint + 2rin Jeos2e, + rinicos3gy,
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The interface shear stresses can also be related to substrate
curvatures via integrals as

= Ehz 6 (K + K + K
T 60— 2 o e )~ R* (e )
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Finally it should be noted that Eq. (5.4) also reduces to
Stoney’s result for the case of spatial curvature uniformity.
Indeed for this case, Eq. (5.4) reduces to:

E

S (5.14)

Op + 099 = (Krr + K(?('))'
If in addition the curvature state is equi-biaxial (k,,=kgg), as
assumed by Stoney, Eq. (1.1) is recovered while relation (5.2)

furnishes o,,.=0 g (stress equi-biaxiality) as a special case.

6. An example

In this section we present an example to illustrate the
difference between the stresses given by Egs. (5.2)—(5.4) and by
the Stoney formula (1.1). We adopt a displacement profile

(6.1)

where wy is the maximum displacement, and # is an integer. For
n=2, the displacement corresponds to the saddle shape. Such a
displacement gives the curvatures

w=wy (1%) cosn0,

wo n-2
K = —Kgg = n(n—1)— e (R) cosnb,

wo s (6.2)
1 = —n(n— 1)R2 (R) sinn0.
The stresses determined from Eqgs. (5.2)—(5.4) are
o ) 2E:h wo /7\"2
O-*(”r) = _0'00 = —m;ﬂn—l)ﬁ (E) COSnQ, (63)
# _ 2Erhs A Wo (T\"72
Gr(? = mn(l’l 1) F (}_2) Slnl’le. (64)

Fig. 2 shows the contour of normal stress o) (=— o) and shear
stress o) for n=2 and 3. The spatial variation of stresses is
clearly observed. On the contrary, the Stoney formula (1.1) gives
a vanishing stress state.

7. Discussion and conclusions

Unlike Stoney’s original analysis and its extensions dis-
cussed in the introduction, the present analysis, together with
Huang and Rosakis [14] and Huang et al.[15] for the special case
of axisymmetry, show that the dependence of film stresses on
substrate curvatures is not generally “local”. Here the stress
components at a point on the film will, in general, depend on
both the local value of the curvature components (at the same
point) and on the value of curvatures of all other points on the
plate system (non-local dependence). The more pronounced the
curvature non-uniformities are, the more important such non-
local effects become in accurately determining film stresses from
curvature measurements. This demonstrates that analyses
methods based on Stoney’s approach and its various extensions
cannot handle the non-locality of the stress/curvature depen-
dence and may result in substantial stress prediction errors if
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Fig. 2. Contour plots of dimensionless stress components (af = % (ol
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such analyses are applied locally in cases where spatial varia-
tions of system curvatures and stresses are present.

The presence of non-local contributions in such relations also
has implications regarding the nature of diagnostic methods
needed to perform wafer-level film stress measurements. Notably
the existence of non-local terms necessitates the use of full-field
methods capable of measuring curvature components over the
entire surface of the plate system (or wafer). Furthermore
measurement of all independent components of the curvature
field is necessary. This is because the stress state at a point
depends on curvature contributions (from k,,, kgg and k,4) from
the entire plate surface.

Regarding the curvature-misfit strain [Egs. (4.2)—(4.4)] and
stress-misfit strain [Eqgs. (4.5)—(4.7)] relations the following points
are noteworthy. These relations also generally feature a depen-
dence of local misfit strain £”(r,0) which is “Stoney-like” as well
as a “non-local” contribution from the misfit strain of other points
on the plate system. Furthermore the stress and curvature states are
always non-equibiaxial (i.e., cP%6® and «,, # Kgg) in the
presence of misfit strain non-uniformities. Only if &”=constant
these states become equi-biaxial, the “non-local” contributions
vanish and Stoney’s original results are recovered as a special case.

0 0.2 0.4 0.6 0.8 1
/R

dj=r 9) for the displacement profile in Eq. (6.1). (a) n=2, 62; (b) n=2, 68; (c) n=3,

Finally it should be noted that the existence of non-uni-
formities also results in the establishment of shear stresses along
the film/substrate interface. These stresses are in general related
to the derivatives of the first curvature invariant x,,.+xrgy [Egs.
(5.11) and (5.12)]. In terms of misfit strain these interfacial shear
stresses are also related to the gradients of the misfit strain
distribution &™(7,0). The occurrence of such stresses is ultimately
related to spatial non-uniformities and as a result such stresses
vanish for the special case of uniform k,,.+kgg or &” considered
by Stoney and its various extensions. Since film delamination is a
commonly encountered form of failure during wafer manufac-
turing, the ability to estimate the level and distribution of such
stresses from wafer-level metrology might prove to be invaluable
in enhancing the reliability of such systems.
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