INTERSONIC EARTHQUAKES: What Laboratory Earthquakes can teach us about real ones

Ares J. Rosakis

Director Graduate Aeronautical Laboratories (GALCIT) California Institute of Technology

Astor Public Lecture

Museum Lecture Theatre Parks Road, Oxford **Friday, May 2, 2008**

Collaborations:

H. Kanamori, Caltech
J. Rice, Harvard University
K. Xia, University of Toronto
N. Lapusta , Caltech
Xiao Lu, Caltech

Office of Naval Research National Science Foundation (Earth Sciences)

What Is a crustal Earthquake ?

Earthquake is a term used to describe both sudden slip on a fault, and the resulting ground shaking and radiated seismic energy caused by the slip.

http://earthquake.usgs.gov/image_glossary/earthquake.html

Earthquakes are **spontaneous** frictional (shear) ruptures occurring along **weak planes** in the crust :

•"spontaneous" implies quasi-static tectonic loading and sudden triggering of dynamic slip.

•"rupture" means propagation of slip along a frictional (incoherent) interface.

Field Evidence of Super shear Rupture During the 1999 (M7.4) IZMIT Earthquake in Turkey

M. Bouchon, M. Bouin, H. Karabulet, M. Toksöz, M. Dietrich and A. Rosakis, *Geophysical Research Letters, 2001*

Fault Speed (West: Rayleigh, East just above $\sqrt{2} C_s = 4.9$ km/s)

Average Rupture Speeds During Crustal Earthquakes

- Within resolution of the inversion process the majority of field evidence suggests rupture speeds, v, between 0.8 C_R to C_R of crustal rock (~2.9Km/s) Venkataraman and Kanamori, *JGR* (2004)
- Evidence of supershear $(C_S < v < C_P)$ rupture bursts along fault segments.

References	Events	
 R. Archuleta, <i>JGR</i> (1984) Spudich and Kranswick, <i>BSSA</i> (1984) 	1979 Imperial Valley, CA	
 Olsen, Madariaga and Archuleta, <i>Science</i> (1997) Hernandez, Cotton and Cambillo, <i>JGR</i> (1999) 	1992 Landers, CA	
• Bouchon et al., <i>GRL</i> (2001)	1999 Izmit, Turkey	
Bouchon and Vallee, <i>Science</i> (2003) Robinson, Brough and Das, JGR, 2006, Das, Science, 2007.	2001 Kunlunshan, China (Transition)	Personal favorites
• Ellsworth et al., (2004)	2002 Denali, Alaska (Transition)	

Field Evidence of Sub-Rayleigh to Supershear Transition (Mw 7.8 2001 Kunlunshan, Tibet Earthquake)

Bouchon and Vallee, Science, 2003, Robinson, Brough and Das, JGR, 2006, Das, Science, 2007.

- Unidirectional, left lateral slip occurring over a very long, near-vertical, strike –slip fault segment.(slip:7-8m max)
- Eastward propagation over a 400 km fault segment
- Sub-Rayleigh over first 100 km (2.8-3.3 km/s)
- Transition to supershear (6 km/s ~P-wave speed)

From Real to Laboratory Earthquakes

(Mimicking Spontaneous Rupture Events in Frictional interfaces)

Mw 7.9, 2002 Denali, Alaska Earthquake. Transition at Laboratory Earthquake. 72Km(18Km W. of pump 10 station).Elsworth et al.(2003)

- Rock
- Fault
- Tectonic stress
- Hypocenter

→ Photoelastic Polymer
 → Inclined Contact Interface
 → Far Field Load
 → Triggering Site

Why Polymer ?

Biaxial Loading Model

Scholz, Dieterich, Beeler...

- 1. Birefringence insures max sensitivity to shear stresses.
- 2. Good linear-elastic material.
- 3. Qualitatively Similar frictional properties to rock (Dieterich, 1979, Dieterich @ Kilgore, 1994, 1996).

Experimental Setup

(Far-Field Loading and Local Release of Pressure: Spontaneous Rupture)

(K. Xia, AJ. Rosakis and H. Kanamori, Science, 2004) (K. Xia, A.J. Rosakis, H. Kanamori and J.R. Rice, Science, 2005)

Classical Sub-Rayleigh Rupture Angle=25°, Pressure=7MPa T=30µs

(Xia, Rosakis and Kanamori, Science, March 2004)

Supershear, or Intersonic, Rupture Angle=25°, Pressure=13MPa T=30µs

(Xia, Rosakis and Kanamori, Science, March 2004)

Transition: From Sub-Raleigh to Supershear (Xia, Rosakis and Kanamori, Science 2004)

Angle=25°, Pressure = 10MPa: transition length L = 20mm 2001 Kunlunshan, Tibet Earthquake: transition length L = 100Km

T=38μs

$40 \ \mu s$

Transition: From Sub-Raleigh to Supershear

(Xia, Rosakis and Kanamori, Science 2004)

From Lab to real earthquakes (Pressure Dependent d_0)

Using particle velocimeters to determine rupture mode X. Lu, N. Lapusta A.J. Rosakis, PNS 2007.

Earthquakes often occur as pulses of slip (e. g., Heaton, 1990)

Observing pulse-like rupture (narrow pulses)

Alpha = 20 degrees, P = 10 MPa, measured at 20 mm

Assumption: Rupture propagates with Rayleigh wave speed (1155 m/s)

Image captured at 22 µs

Transitioning from **Pulses** to **Cracks** (P=10 MPa)

X. Lu, N. Lapusta A.J. Rosakis, PNS 2007.

Rupture mode changes by increasing interface angle Pressure=14 MPa (From Cracks to Heaton Pulses)

Mode Transition: From Pulses (0) to Cracks (1)

Consistent with Zheng and Rice, BSSA, 1998

Sub-shear crack transitioning to supershear crack Angle=30°, Pressure=14 MPa

Velocity measured at 20 mm

Velocity measured at 40 mm

X. Lu, N. Lapusta A.J. Rosakis, PNS 2007.

Transition to Supershear: Crack to Crack or Pulse to Pulse?

A supershear pulse?

Double Mach front

Double Mach front

Results and Questions from the Homogeneous Case

RESULTS:

- Small loads or angles: SUBRAYLEIGH RUTPURES(PULSES)
- Large load or angle: SUPERSHEAR RUPTURES(CRACKS)
- Sub-shear to supershear and mode transitions are observed for both cracks and Pulses.
- The speed transition length increases with decreasing load and angle.

QUESTIONS:

• What would happen if all faults were perfectly uniform, straight and infinite? Would all ruptures eventually transition to supershear?

• Is there a connection between LARGE earthquakes and super shear rupture? A large earthquake event is one whose rupture continues for a long time.

Explaining the Rupture speed ASYMMETRY (The N. Anatolian fault near the sea of Marmara has bimaterial structure)

Le Pichon, Chamot-Rooke, Rangin and Sengor. J.G.R. 2003. Softer material to the South

Inhomogeneous (Bimaterial)Fault Model

(Xia, Rosakis, Kanamori and Rice, Science, 2005)

•Homalite shear wave speed (Fast): 1200 m/s

•Polycarbonate shear wave speed (slow): 960 m/s

•Shear wave difference: 25%

•The generalized Rayleigh wave speed: 950 m/s

<u>Generalized Rayleigh (GR) wave speed:</u> Propagation speed of sliding in frictionless contact.

Experimental Examples: GR Speed (POSITIVE)& Sub-shear (NEGATIVE) Angle=25°, Pressure=10 MPa

POSITIVE:

Rupture direction same as direction of slip of the lower velocity side $V=+C_{GR}$

(Small P)

<u>Generalized</u> <u>Rayleigh</u> (<u>GR</u>) wave <u>speed:</u> Propagation speed of sliding in frictionless contact.

This Figure is oriented according to the 1999 Izmit event

44 μs **GR (POSITIVE DIRECTION)& -P_{SLOW} (NEGATIVE DIRECTION)**

Super shear Transition-Only along the NEGATIVE Direction

Explaining the Rupture speed ASYMMETRY (The N. Anatolian fault near the sea of Marmara has bimaterial structure)

Le Pichon, Chamot-Rooke, Rangin and Sengor. J.G.R. 2003. Softer material to the South

Supershear Transition-Only along the NEGATIVE Direction

(Angle=25°, Pressure=13MPa)

(Intermediate P)

Equivalent observations in terms of increasing angle

Transition Length as a Function of load P for Both Homogeneous and Bimaterial Systems

For the same load, it takes longer propagation distance in bimaterials to transition to super shear

Summary of Experimental Results

•All ruptures are bilateral. No preferred direction observed.

•The rupture in one direction (**POSITIVE**) always propagates at the generalized Rayleigh wave speed $+C_{GR}$.

•Depending on loading, the rupture in the **NEGATIVE** direction is either sub-shear or supershear.

• For large enough P or α (small s), rupture in the **NEGATIVE** direction eventually transitions to supershear

 $(V = -P_{SLOW})$

•Suggested Connection between large earthquakes and supershear growth in the NEGATIVE Direction ?

Numerical & Theoretical Self-sustained Rupture Modes (Speeds and Directionality)

Coulomb type of friction laws: (Weertman, 1980; Adams, 1995, 98; Andrews & Ben-Zion, 1997; Ranjith and Rice, 1999, Cochard & Rice, 2001)

- Positive direction: V≈+C_{GR} (Strong numerical preference)
- Negative direction: $V \approx -P_{SLOW}$ (Difficult to excite)
- Never excited simultaneously in numerics.
- Positive direction was postulated as being PREFERABLE

Weakening frictional laws: (*Harris & Day, 1999-2D, 2005-3D*)

- Only bilateral ruptures
- Both $+C_{GR}$ and $-P_{SLOW}$ modes observed New parametric studies by Shi & BenZion 2006 and by Rubin and Ampuero , 2006.

Structure of Geological Faults (Ben-Zion and Sammis, PAGEO 2003; Sibson, BSSA 2003)

Can Damage create preferred directions? Rosakis, Sammis, Biegel, Bhat (in progress)

32 µs

Can Damage create preferred directions? Rosakis, Sammis, Biegel, Bhat (in progress)

34 µs

Bimaterial Crust Structure at Parkfield -Evidence Against an Exclusive Direction-

is 10-20% with east side being slower.

Variability of Rupture directions Observed in North Anatolian Fault Sequence (Large events –supershear to east?)

