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A B S T R A C T   

The electromagnetic aspects of the fully dynamic flexoelectric problem are examined for 
dielectric solids by introducing a new theoretical framework which incorporates both gradients of 
electric polarization and flexoelectricity due to strain gradients and also includes a weak coupling 
with the magnetic field. This formulation predicts the existence of linear relations between the 
electric field and the dilatational components of the particle accelerations. It also shows that the 
magnetic flux and the magnetic field are proportional to the shear components of the particle 
velocities. Our continuum theory, although based on very different assumptions, seems to be 
analogous to the electrokinetic theory of Pride which has been used to assess seismo-magnetic 
phenomena and measurements in earthquake events.   

1. Introduction 

Flexoelectricity is the ability of materials to convert mechanical strain gradients to electric polarization and vice versa and exists in 
all dielectric materials. An excellent recent perspective of this unusual electromechanical coupling with emphasis on applications in 
energy harvesting, micro-electro-mechanical systems, nanotechnology, and biology can be found in Tripathi el al. (2021) as well as 
other review articles like (Tagantsev, 1991; Yudin and Tagantsev, 2013; Zubko et al., 2013; Kritchen and Sharma, 2016; Jiang et al., 
2013; Wang et al., 2019; Deng et al., 2020) to mention but few. However, an electric field that changes with time gives rise to a 
magnetic field that has to be accounted for. It is the purpose of this work to investigate the electromagnetic fields ensuing from the 
flexoelectric theory. 

There is ample theoretical work on flexoelectricity in both static and dynamic context, and the most recent ones include the works 
of Majoub et al. (2008), Hu and Shen (2009), Sharma et al. (2010), Shen and Hu (2010), Hu et al. (2018). There are numerous 
publications related to examples and applications, several of them can be found in the fore-mentioned review articles. One of the most 
important classes of applications for which Flexoelectricity theory becomes very useful is related to many dynamical problems 
encountered in both engineering and in the Geosciences. Indeed, these include many important cases where stress wave- and shock 
wave-induced loading enhances the flexoelectric response and influences materials behavior and device reliability. The commonality 
between such applications is the existence of very high strain gradients related to dynamic loading. As only one example, from En-
gineering, the protection of electronic devises and high-pressure diagnostic equipment from spurious electrical effects, when 
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mechanically shocked during operation (e.g. impact from accidental drop, explosion etc.), brings about the dramatic drop of electric 
resistivity of many dielectrics subjected to mechanical shock conditions. Impact-induced strain gradients in such problems are typi-
cally very high, therefore the flexoelectric phenomenon could account for such electric resistivity observations. 

Similar phenomena, occurring at a vastly different length scale can also be found in the field of Earthquake Source Mechanics. Here 
dynamic shear ruptures propagating along faults are known to be the key mechanism of generating earthquakes (Aki and Richards, 
1980; Ida and Aki, 1972). These ruptures can propagate at various speeds and depending on such speeds; the surrounding rock will be 
subjected to a high strain gradient field whose nature, at the near field, will also depend on the rupture tip speed. 

The recent experimental discovery by Rosakis and his group (Liu et al., 1993; Rosakis et al., 1999; Xia et al., 2004) of super-shear 
dynamic ruptures, whose speeds exceed the shear wave speed represents an extreme case involving the most severe localization of 
strain gradients across Mach-Cone structures emanating from the rupture tip and has once again brought to the forefront the suspected 
connection between shock wave fronts (both shear and/or dilatational) and the flexoelectric response as well as the associated 
electromagnetic emissions. It has also motivated our most recent work on this subject (Giannakopoulos and Rosakis, 2020). The 
analogue experiments referred to above, are designed to mimic real earthquake events in the lab scale. They have typically been 
performed in specimens made of polymers such a PMMA (an isotropic, strongly flexoelectric polymer) and have revealed the existence 
of Mach-line structures when characteristic speeds are exceeded by the ruptures. Such Mach-like structures, remain almost 
un-attenuated away from the frictional fault planes (fault), sweeping the solid during rupture growth, and inducing very large strain 
rates,along the shock length, and very high local strain gradients across it (Rosakis et al., 2020). Regarding large scale, as opposed to 
laboratory scale Earthquakes ruptures, the experimental discovery of supershear ruptures in the lab has motivated field seismologist to 
look closer at field evidence for large-magnitude earthquakes propagating at supershear speed and as a result the reporting of such 
events, formerly thought to be rare, have significantly multiplied (e.g. Bouchon et al., 2001; Ellsworth et al., 2004; Bao et al., 2019; 
Elbanna et al., 2021; Amlani et al., 2022, just to name a few). Given that supershear rupture is indeed a high possibility during large 
real earthquakes and that many crustal rock types (much like some of the polymers used in the experiments) are also known to be 
flexoelectric, the existence of the anticipated Mach-lines at the rupture tips is expected to promote especially strong flexoelectric effects 
during supershear earthquakes, and are thus of great relevance to the present study as a possible source of very strong electromagnetic 
emission. 

Many of the rock types that comprise the earth’s crust and mantle exhibit flexoelectricity, often combined with piezoelectricity 
(which is only relevant in the case of anisotropy). Electromagnetic emission associated with rock and ice fracture has been recorded 
(see for example Ogawa and Oike, 1985; Yamada et al., 1989; Fifolt et al., 1993; Yoshida et al., 1998) and has been related to 
earthquakes, e.g. (Gakhberg and Morgounov, 1982; Draganov et al., 1991). Co-seismic electric and magnetic signals have been 
recorded in natural earthquakes (Matsushima et al., 2002; Johnston et al., 2006; Honkura et al., 2009; Ujihara et al., 2004; Gugliemi 
et al., 2006). Several possible models and micro-mechanisms have been proposed to explain the physics involved in producing such 
emissions. A possible reason for the electromagnetic emission for non-piezoelectric rocks (sandstone, marble, limestone) and ice may 
be the flexoelectric effect, as suggested by Petrenko (1993) and discussed above. 

Yet another mechanism of electromagnetic emission can be found in the work of Bordes et al. (2008) and Garambois and Dietrich 
(2001) who based their analysis on the theory of Pride (1994). When seismic waves travel in porous materials that contain fluids 
(mainly water), a relative fluid-grain velocity develops. At the grain-fluid interfaces, a bound surface charge appears and then the 
electrically balanced free ions in the fluid move, generating an electric streaming current, ensuing electromagnetic phenomenon 
related to the mechanical deformation. Pride developed a complete macroscopic theory based on the governing equations of poroe-
lasticity (Biot) and of electromagnetism (Maxwell), introducing two coupling equations through an electro kinetic coupling coefficient. 
The transport equations were formulated through averaging the ion activity in the fluid phase. As a result, the relative fluid-grain 
velocity can depend on the electric field and the streaming current can depend on the Darcy filtration velocity. 

A recent review with many important references on the electrokinetic seismo-magnetics can be found in (Jouniaux and Zyserman, 
2016). This work teats a sedimentary rock as a composite of grains and water (or any other electrolyte). The solid-fluid interaction 
follows from the well-known Biot theory. At the solid-fluid interface electric charge is adsorbed by the solid grains, balanced by the 
ions that flow in the liquid due to the presence of mechanical stresses and as a result, the electric field is established by the electro-
kinetic mechanism. Their key result is that the electric field developed inside the material is proportional to the acceleration of the 
mechanical displacement while the magnetic field is proportional to the mechanical velocity. Misutani et al. (1976) indicated that the 
electrokinetic phenomenon of fissured rocks saturated with water applies to many earthquakes like the Matsuhiro earthquake swarm; 
see for example (Enomoto et al., 2017). The electrokinetic mechanism may be related to them, as was anticipated early on by Ishido 
and Mizutani (1981) and Mizutani and Ishido (1976). The amplitudes of such signals range in 1-100 mV/km for the electric field and 
0.01-1 nT for the magnetic flux (Ren et al., 2015). 

In what we discuss here, flexoelectricity is considered to be the only source of strain gradient effects, and the coupling of the 
mechanical problem is analogous to a problem of couple stress elasticity where the two characteristic types of lengths emerge as a 
combination of mechanical, dielectric and flexoelectric constants, as discussed in Giannakopoulos and Rosakis (2020). The first type of 
length resembles the (well known in the context of couple stress elasticity) microstructural length which is connected to the 
displacement curvature (see also the anti-plane problem in static form by Gavardinas et al (2018) and in dynamic form by Gianna-
kopoulos and Zisis (2019, 2021)). The second type of length is less referenced (and hardly considered in metrology) and resembles the 
micro inertial length that essentially introduces a non-classic kinetic energy term that connects to the micro-rotations of the matter. In 
addition to what was discussed by Giannakopoulos and Rosakis, in our present model we also include additional modeling elements 
reflecting the important fact that the electric polarization acceleration leads to electromagnetic emission. Including this behavior in 
our model is in line with experimental evidence in laboratory fractures of ice and rocks and in field measurements prior and during to 
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earthquake events. Our present work also shows that the electrokinetic model of Pride, developed for dynamic seismo-electromagnetic 
phenomena in porous media, is very similar to a dynamic flexoelectric model, augmented to include the magnetic field through a weak 
interaction established by Mindlin and Toupin (1971). 

The results of the present work imply that electromagnetic phenomena related to a multiplicity of dynamic geophysical phenomena 
involving dynamic deformations of rocks (e.g. deformations such as those resulting from fast earthquake ruptures or from high-speed 
impact) need not only be interpreted by invoking electrokinetic mechanisms but can be generalized to all dielectrics that exhibit the 
flexoelectric phenomenon. In addition to dynamic geophysical phenomena, our generalized magneto-flexo-electric model is also 
appropriate for the modelling of dynamic rupture in many polymers such PMMA as Homalite-100 that are utilized in the “Laboratory 
Earthquake” set up, introduced by Rosakis and co-workers, (Xia et al., 2004; Rosakis et al., 2020). The fact that such materials, very 
much like various types of crustal rocks, are also strongly flexoelectric makes them excellent candidates as analogue materials to be 
used in the laboratory study of very fast earthquake ruptures. In particular, highly dynamic rupture processes, such as super-shear (or 
intersonic) rupture, are perfect candidates for analyzing by our dynamic magneto-flexo-electrictheory and eventually validating it 
through our analogue lab experiments. 

The paper is structured as follows. In Section 2 we give a short account of our prior work in flexoelectricity regarding the me-
chanical displacements and the polarization. We then extend our prior work by formulating the governing equations for the electric 
and the magnetic fields that result from the polarization. In Section 3 we connect the electromagnetic potentials with the polarization 
potentials. In Section 4 we provide approximate solutions of the electric and the magnetic fields in terms of the acceleration and 
velocity fields. In Section 5 we establish an analogy between the magneto-flexo-electric formulation we established in Section 2 and the 
electrokinetic formulation used in fluid-saturated porous materials. In Section 6 we revisit the seismoelectric transfer functions found 
from the electrokinetic formulation and compare them with those found from the flexoelectric formulation in Section 4. In Section 7 we 
provide an analysis of plane wave propagation in flexoelectric and fluid-saturated porous materials. Finally, in Section 8 we synopsize 
our results and discuss important applications of the theory. 

2. Magneto-flexo-electricity: the mechanical and the electromagnetic field 

We examine a homogeneous linear flexoelectric solid (being dielectric at the same time) with an energy density due to elastic 
deformation and electric polarization which depends on the strain gradients. Reverse flexoelectricity implies that the gradient of the 
polarization produces strain and should be included in the energy density. The elastic strain energy due to strain gradient effects will 
not be considered and the kinetic strain energy will not include micro-rotational effects. We will first follow the approach of Gian-
nakopoulos and Rosakis (2020) and decouple the problem to one that involves only the displacement vector (dynamic equation) and 
another that involves the polarization vector in relation to the displacement (transfer equation). Then, we will extend our previous 
theory by introducing a weak coupling with the electromagnetic field, as suggested by Mindlin and Toupin (1971). This will allow us to 
decouple the problems of electric and magnetic fields, which can be solved using the polarization found in the previous steps. 

In what follows, consider the flexo-electric problem with key unknowns the material displacement vector ui [m], the material 
(electric) polarization vector Pi [C/m2] and the electric field Ei [Nm/C]. These are functions of the (right-handed) Cartesian coordinates 
x1, x2, x3 and the time t. The linear (Helmholtz) internal energy density function that includes deformation and polarization is 
(Maraganti et al., 2006; Sharma et al., 2010): 

W =

⎡

⎢
⎣

1
2
aijPiPj +

1
2
bijklPj,iPl,k +

1
2

cijklεijεkl + eijklPj,iεkl

+fijklPiεkl,j + b0
ijPj,i

⎤

⎥
⎦ (2.1) 

The mechanical linear strain is related to the displacement vector asεij = (ui,j + uj,i)/2. Pi,jis the gradient of the polarization vector Pi 

and εij,k are the gradients of the strains. Repeated indices imply summation from 1 to 3 and(),i = ∂/∂xi. The dielectric body will be 

assumed to be a perfect insulator, so the divergent of the polarization vector is minus the bounded electric charge inside the body, ∇ ⋅ 
P→ = − ρbound[C/m3]. The compatibility equations are identical to classic linear elasticity. The form of the energy density function (2.1) 
omits an extra term that ensures thermodynamic stability of the total energy (1/2gijklmn ui,jk ul,mn). This term represents the contri-
bution of purely elastic nonlocal effects. It has been found however (see Sharma et al., 2010) that, for most problems, excluding this 
contribution is generally small, although, if flexoelectricity is incorporated, it is required to guarantee thermodynamic stability. For 
some problems, this omission (or inclusion) of this term may be important especially where stability is an issue. 

The material constants are: the elastic constant tensor cijkl [N/m2], the flexo-electric coefficient tensor fijkl [Nm/C], the reciprocal 
dielectric susceptibility tensor aij [Nm2/C2], the inverse flexo-electric coefficient tensor eijkl [Nm/C] and the gradient polarization 
coupling tensor bijkl [Nm4/C2]. The symmetries of the above constants have been addressed in (Shu et al., 2011). All these material 
tensors should be positive definite. The constants b0

ij are related to the surface energy per unit area Ts = (nib0
ijPj)/2 with ni being the unit 

normal vector pointing outside the flexoelectric body (Mindlin, 1968) and do not affect the balance laws, but only the boundary 
conditions. The dielectric susceptibility χrelates to the dielectric constant of vacuum ε0 as1/a = χε0. The classic elastic dielectric case is 
obtained, if fijkl = 0 andeijkl = 0, whereas the classic elastic case requires additionally aij = 0 and b0

ij = 0. If onlyfijkl = 0, we recover the 
formulation for a dielectric solid with polarization gradient. Typical material constants for PMMA (poly-methyl-methacrtylate) were 
estimated and are shown in Giannakopoulos and Rosakis (2020). A rather complete material data for alkali halides have been found by 
Askar et al. (1970) and for zirconia titanate by Zubko et al. (2008). Material data for single crystals can be estimated form atomistic 
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calculations, as for example by Maranganti and Sharma (2009). 
In the works on continuum flexoelectricity so far, the Maxwell electric self-fieldEi was assumed to be furnished by an electric 

potential through Ei = − Φ,i [N/C]. In this work, and in anticipation of the interaction with the magnetic field, we will eventually allow 
the electric field to be general. The total electric enthalpy is (Toupin, 1956): 

H = W −
1
2
ε0EiEi − EiPi (2.2)  

where, ε0 = 1/(36π) × 10− 9 ≈ 8.854 × 10− 12C2N− 1m− 2[= Fm− 1] is the dielectric permittivity of vacuum (assumed to surround the 
body). The weak interaction with the magnetic field is based on the assumption of the electric enthalpy as in (2.2), being essentially 
uncoupled to the magnetic field (Mindlin and Toupin, 1971). Later-on we will add the equations for the magnetic field Hi (i.e. the 
Faraday’s law, the Gauss’ law and the Ampere’s law) through the magnetic flux density vectorBi[Nsm− 1C− 1=T]. This approach implies 
the electric part of the Maxwell stress ε0(EiEj − 1 /2δijEkEk) is less than the magnetic part of the Maxwell stress(1 /μ0)(BiBj − 1 /2δBkBk), 
whereμ0 = 4π × 10− 7kgm/C2[= Tm /A= H /m] is the magnetic permeability of vacuum andδij is the Kronecker’s delta. Therefore, the 
following inequalities must hold: ε0μ0EiEi < BkBk and ε0μ0(EiEj)

2
< 4(EkBk)

2. In most dielectrics, these assumptions are quite 
reasonable and their magnetic susceptibility can also be neglected. However, composites made of both magnetostrictive and piezo-
electric compounds can exhibit strong electromagnetic coupling, see for example Nan (1994). Our present analysis excludes such 
composites. 

The kinetic energy density is: 

T =
1
2

ρu̇iu̇i (2.3)  

where ρ is the material mass density and u̇i = ∂ui/∂t is the material velocity vector . If ρ = 0, the problem reduces to the static case. The 
constitutive relations, the balance equations, the boundary conditions and the initial conditions have been discussed by Giannako-
poulos and Rosakis (2020) and are summarized here in Appendix A. Assuming zero body forces and initial electric field (or more 
generally for harmonic body forces and initial electric fields); we obtain the Cauchy-Navier type of governing equations: 

c44∇
2 u→+ (c12 + c44)∇(∇ ⋅ u→) + (e44 − f12)∇

2 P→+ (e12 + e44 − 2f44)∇(∇ ⋅ P) = ρ ü→ (2.4)  

and 

(e44 − f12)∇ ⋅ ∇2 u→+ (e12 + e44 − 2f44)∇
2∇ ⋅ u→

+(b44 + b77)∇ ⋅ ∇2 P→+ (b12 + b44 − b77)∇
2∇ ⋅ P→−

(
a + ε− 1

0

)
∇2∇ ⋅ P→= 0

(2.5)  

where,∇2 = ∇k∇k = ∂2/∂x2
1 + ∂2/∂x2

2 + ∂2/∂x2
3 is the Laplacian operator, and ∇4 = ∇2∇2 is the biharmonic operator. Note that the 

modified Eq. (2.5) has eliminated the electric field by incorporating the Gauss law, as shown in Appendix A. 
The corresponding, work conjugate, boundary conditions are summarized in Table 1. 
The initial conditions are: ui( x→,0) = u0

i ( x→), u̇i( x→,0) = u̇0
i ( x→), Pi( x→, 0) = P0

i ( x→) where u0
i is the initial displacement vector, u̇0

i is 
the initial velocity vector and P0

i is the initial polarization vector and are often taken to be zero. 
The representation of the general solution in the absence of body forces and initial electric field has been given by Giannakopoulos 

and Rosakis (2020) as a Helmholtz decomposition of both the displacement and the polarization vectors as 

u→= ∇ϕ +∇× H→
∗

∇ ⋅ H→
∗

= 0 (2.6)  

Table 1 
Mutually exclusive boundary conditions for the flexoelectric problem.  

Mutually Exclusive Boundary Conditions 
Essential Boundary Conditions Dynamic Boundary Conditions 

Pi niEij 

Φ ni(ε0‖Ei‖ + ‖Pi‖) = σs

Ei = − Φ,i 
Dui ri = τkjinknj 

ui ti = σijnj − τkji,knj + (Dlnl)njnkτkji − Dj(τkjink)

niis the unit normal vector pointing outside the body 
D ≡ nk∂/∂xk is the normal to the surface derivative 
Dj ≡ (δjk − njnk)∂/∂xk is the tangential to the surface derivative 
‖ ‖= ()

+
− ()

− is the jump from outside of the body (+) to the inside of the body (-) 
σsis the surface charge imposed on the dielectric boundary  
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P→= ∇χ∗ + ∇ × K→ ∇ ⋅ K→= 0 (2.7)  

where ϕ( x→, t) and χ∗( x→, t) are scalar functions, whereas H→
∗

( x→, t)and K→( x→, t)are vector functions that are solutions of 

∇2ϕ − ℓ2
p∇

4ϕ =
1
c2

p

(
ϕ̈ − h2

p∇
2ϕ̈

)
(2.8)  

∇2 H→
∗

− ℓ2
s∇

4 H→
∗

=
1
c2

s

(
¨H→

∗

− h2
s∇

2 ¨H→
∗
)

(2.9)  

∇2χ∗ − ℓ2
p∇

4χ∗ =
1
c2

p

(
e11 − f11

a + ε− 1
0

∇2ϕ̈
)

(2.10)  

∇2 K→− ℓ2
s∇

4 K→=
1
c2

s

(
e44 − f12

a
∇2 ¨H→

∗
)

(2.11)  

where the characteristic dilatation and shear speeds appear as it does in the classic elastodynamics 

cp =

̅̅̅̅̅̅
c11

ρ

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c12 + 2c44

ρ

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅
λ + 2μ

ρ

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E(1 − ν)

ρ(1 + ν)(1 − 2ν)

√

cs =

̅̅̅̅̅̅
c44

ρ

√

=

̅̅̅μ
ρ

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E

2ρ(1 + ν)

√

< cp

(2.12) 

In the above equationsE, and ν are the Young’s modulus and the Poisson’s ratio respectively, and (λ,μ)are the classic Lame con-
stants. Moreover, four lengths appear, defined by 

{
μ, a, f12, f44, e44, b44 + b77, μ(b44 + b77) − e2

44

}〉
0

ℓ2
s =

b44 + b77

a
−
(e44 − f12)

2

μa
≥ 0

h2
s =

(b44 + b77)

a
≥ ℓ2

s ≥ 0

(2.13)  

{
b11 = b12 + 2b44, a, f11 = f12 + 2f44, e11 = e12 + 2e44, f44, (λ + 2μ)b11 − e2

11

}〉
0

ℓ2
p =

b11

a + ε− 1
0

−
(e11 − f11)

2

(λ + 2μ)(a + ε− 1
0

) ≥ 0

h2
p =

b11

a + ε− 1
0

≥ ℓ2
p ≥ 0

(2.14) 

Eqs. (2.8) and (2.9) are the fundamental equations concerning only the mechanical fields, whereas Eqs. (2.10) and (2.11) are 
coupling equations that show how polarization fields couple with the mechanical fields. Thus, we obtain two “micro-structural” related 
lengths (ℓp, ℓs) and two “micro-inertial” related lengths (hp, hs). Note that the positiveness of the lengths stems from the assumed 
convexity of the energy density. Gradient dielectricity also yields the internal lengths (ℓp,ℓs) and (hp,hs), while flexo-electricity leads to 
higher microstructural lengths, compared to gradient dielectricity. The mechanical response is similar to the Mindlin’s model of linear 
elastic solids with microstructure (Mindlin, 1963). We further note that polarization exhibits a size effect similar to the size effect of the 
mechanical displacement. The body forces and the initial electric fields may be easily incorporated in Eqs. (2.8-2.11) provided we can 
represent these fields as the displacement and polarization field in Eqs. (2.6) and (2.7). The general solution starts from the mechanical 
response, solving (2.8) forϕ( x→, t), and (2.9) forH→( x→, t). Once the displacement vector is found, the polarization vector can be found 
from the solution of (2.10) for χ∗( x→, t) and (2.11) for K→( x→, t). 

The dynamic response of polarization may lead to polarization acceleration that cannot be excluded if the present consideration is 
to be used to describe dynamic phenomena associated with impact and seismic events involving dynamic rupture. In these cases, the 
magnetic effects cannot be neglected. To incorporate them, we consider a Maxwell magnetic flux density vector 
Bi[N /(Am)= Ns /(Cm)= Wb /m2 = T] which acts both inside and outside of the material (the electric field acts inside the dielectric 
only). This, in turn, will create a magnetic field vectorHi[A /m = C /(sm)]. To find these fields, we follow the approach of Mindlin and 
Toupin (1971). Thus, the Maxwell equations specialize inside the body as follows: 
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∇× E→+
˙B→= 0→ (2.15)  

which is a statement of Faraday’s law and replaces the static law∇× E→ = 0→. Next we include Gauss’ law for magnetism (absent of free 
magnetic poles): 

∇ ⋅ B→= 0 (2.16) 

Finally, we include Ampere’s circuital law: 

∇× B→− μ0ε0
˙E→− μ0

˙P→= 0 (2.17) 

Furthermore, the quantityε0
˙E→+

˙P→=
˙D→ is defined as the total current density vector [A/m2] and D→ [C/m2] is the electric 

displacement vector. Note thatclight = 1/(ε0μ0)
1/2

≈ 3 × 108m/s is the speed of light in vacuum. 
We now proceed to differentiate Eq. (2.17) once with respect to time, take the curl of Eq. (2.15) and then use the resulting equations 

to eliminate the magnetic flux density. Further use of the identity, ∇× (∇× E→) = ∇(∇ ⋅ E→) − ∇2 E→ allows us to obtain a relation 
between the electric field and the polarization as follow: 

∇2 E→− ∇
(
∇ ⋅ E→

)
= μ0

¨P→+ μ0ε0
¨E→ (2.18) 

The above relation is a wave equation that can be solved for E→, provided that P→(acting as a ‘body force’) is known and is obtained 
from the previous steps of the analysis. Once this is done, the magnetic flux B→ can be calculated from (2.15) and (2.16) and finally the 
magnetic fieldH→[A /m= C /ms] can be estimated from a simple, linear constitutive equation that assumes isotropic dielectric material 
which cannot be magnetized, as follows: 

H→≈ μ− 1
0 B→ (2.19) 

These last steps of the solution require additional boundary conditions. As a matter of fact, these can be interface conditions with 
vacuum (referred to here as body 2) assumed to occupy the region exterior to the dielectric (referred to here as body 1) and are two for 
the electric field and two for the magnetic field (Born and Wolf; 1999 Jackson, 1975). These boundary conditions are shown in 
Appendix B. 

It is also useful to derive the wave equation for the magnetic fieldH→. To achieve this, we take the curl of the Ampere’s law (2.17) 
and differentiate it once with respect to time. We then utilize the constitutive Eq. (2.19) as well as Faraday’s law (2.15). After some 
manipulation, we obtain: 

∇2 H→− ∇
(
∇ ⋅ H→

)
= μ0∇×

˙P→+ μ0ε0
¨H→ (2.20) 

The above equation can be solved forH→, with known P→(acting as a ‘body force’) from the previous steps of the analysis. 
Furthermore, we take the inner product of Faraday’s law (2.15) with the magnetic flux B→. Then, we take the inner product of Ampere’s 
law (2.17) with the electric field E→ and insert in it the previous result, while utilizing the identity∇ ⋅ ( E→ × B→) = (∇ × E→) ⋅ B→ −

E→ ⋅ (∇ × B→). Finally, by using the constitutive law (2.19) we replace the magnetic flux B→with the magnetic fieldH→, and so we obtain 
the electromagnetic energy balance equation as follows: 

− ∇ ⋅
(

E→× H→
)
= H→ ⋅ ˙B→+ E→ ⋅

(
ε0

˙E→+
˙P→
)

(2.20) 

Note that in the above relation, E→× H→is the Poynting vector and that the product E→ ⋅ (ε0 E→ + P→)is called the Joule heat power. To 
the best of our knowledge, the relations (2.18), (2.20) and (2.21) have not been presented before in the context of flexoelectricity. 

In summary, this section reviewed our previous results (2.4-2.14) and introduced a weak magnetic coupling that allowed us to 
formulate two new governing equations for the electric (2.18) and the magnetic (2.20) fields in relation to the polarization field. The 
mechanical and electromagnetic equations that control the problem can now be synopsized as follows: 
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u→= ∇ϕ +∇× H→
∗

,∇ ⋅ H→
∗

= 0

∇2ϕ − ℓ2
p∇

4ϕ =
1
c2

p

(
ϕ̈ − h2

p∇
2ϕ̈

)
,∇2 H→

∗

− ℓ2
s∇

4 H→
∗

=
1
c2

s

(
¨H→

∗

− h2
s∇

2 ¨H→
∗
)

P→= ∇χ∗ + ∇× K→,∇ ⋅ K→= 0

∇2χ∗ − ℓ2
p∇

4χ∗ =
1
c2

p

(
e11 − f11

a + ε− 1
0

∇2ϕ̈
)

,∇2 K→− ℓ2
s∇

4 K→=
1
c2

s

(
e44 − f12

a
∇2 ¨H→

∗
)

∇2 E→− ∇
(
∇ ⋅ E→

)
= μ0

¨P→+ μ0ε0
¨E→,∇2 H→− ∇

(
∇ ⋅ H→

)
= μ0∇×

˙P→

+ μ0ε0
¨H→

3. The electromagnetic problem 

In this section we will recast the electromagnetic problem stated at the end of Section 2 (Eqs. (2.18) and (2.20)), using electric 
potentials, as suggested by Mindlin (1974). Then we will replace the polarization vector with the polarization potentials found from 
our previous work. Following the classic work of Born and Wolf (1999), Eqs. (2.15-2.17) can be uniquely represented with a scalar 
electric potentialΦ( x→, t) and a vector electric potentialA→( x→, t) so that: 

E→= − ∇Φ −
˙A→= E→

p
+ E→

s
(3.1)  

B→= ∇× A→ (3.2) 

Eq. (3.2) satisfies Gauss Eq. (2.16) and Eq. (3.1) with (3.2) satisfy Faraday’s Eq. (2.15) inside the body that develops polar-
ization P→( x→,t). Electromagnetism accepts a gauge condition and in the present work we accept the Lorentz conditionc2

light∇ ⋅ A→ = − Φ̇. 

The potentialsΦ( x→, t) andA→( x→, t) must satisfy the Ampere’s Eq. (2.17). Inserting the representations (3.1) and (3.2) in (2.17) and 
using the Lorentz condition we obtain: 

c2
light∇

2 A→−
¨A→= − ε− 1

0
˙P→ (3.3) 

Taking the divergence of (3.3) with the Lorentz condition and integrating once with respect to time, we obtain: 

c2
light∇

2Φ − Φ̈ = ε− 1
0 c2

light∇ ⋅ P→ (3.4) 

Taking into consideration the decomposition of the electric polarization P→ as in wq. (2.7), from (3.4) and (2.10) we obtain: 

∇2Φ −
1

c2
light

Φ̈ = ε− 1
0 ∇2χ∗ (3.5) 

Subsequently, taking the curl of Eq. (3.3) into consideration with the decomposition of the electric polarization as of Eq. (2.11) we 
find that: 

c2
light∇

2
(
∇× A→

)
− ∇ ×

¨A→= − ε− 1
0 ∇×

(
∇×

˙K→
)

(3.6) 

Finally, assuming that the region exterior to the dielectric body is vacuum, then Eqs. (3.3) and (3.4) hold with P→( x→, t) = 0→ and so 

we obtainc2
light∇

2Φ = Φ̈ andc2
light∇

2 A→ =
¨A→. 

In summary, in this section we recasted the electric and the magnetic field Eqs. (2.18) and (2.20) obtained in Section 2 in terms of 
two electric potentials (together with the Lorentz condition). Utilizing the piezoelectric potentials, we obtained the governing 
equations for the electric potentials in relation to the piezoelectric potentials and thus establishing the connection of the electro-
magnetic fileds with the flexoelectric problem. 

4. The electromagnetic solution 

In this section we construct the solution of (3.5) and (3.6) derived from Section 3 in terms of the mechanical velocities and ac-
celerations. We start by noting that the velocity and the polarization rate can be stated from (2.6) and (2.7) as 

u̇→= ∇ϕ̇ +∇×
˙H→
∗

= u̇→
p
+ u̇→

s
∇ ⋅ ˙H→

∗

= 0 (4.1)  

˙P→= ∇χ̇∗
+ ∇ ×

˙K→ ∇ ⋅ ˙K→= 0 (4.2)  

Where u→pand u→s are displacements related to longitudinal p-waves and s-waves respectfully. For low frequencies, ω2 /L << c2
light 
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where L is a characteristic, macroscopic length of the problem, or equivalently, for V2 << c2
light where V is a characteristic velocity of 

the problem (e.g. the velocity of propagation of mechanical stress waves, or a crack tip velocity), we can assume|∇2Φ| >> |Φ̈ /c2
light |. 

Then (3.5) implies 

∇2Φ ≈ ε− 1
0 ∇2χ∗ (4.3)  

which is approximately the electric balance equation in the absence of magnetic field. Taking as a first approx-
imationℓ2

p |∇
4χ∗| << |∇2χ∗| the right hand side of (4.3) with Eq. (2.10) becomes ε− 1

0 ∇2χ∗ ≈ 1
c2

p

e11 − f11
aε0+1 ∇

2ϕ̈ . Recalling further that∇ϕ̇ =

˙u→pand ∇ ⋅ (∇ϕ̈) = ∇2ϕ̈ = ∇ ⋅ ¨u→p, we obtain the approximation: 

− ∇Φ = E→
p
≈ −

1
c2

p

e11 − f11

aε0 + 1
ü→

p
(4.4) 

This essentially means that the solenoidal part of the electric field is proportional to the mechanical (dilatational) acceleration. 
Using the data for PMMA from Giannakopoulos and Rosakis (2020), we obtain the ratio: 

⃒
⃒
⃒ ü→

p⃒⃒
⃒

⃒
⃒
⃒E→

p⃒⃒
⃒
≈ 225 × 106 m2

s2V 

Taking representative values for alkali halides from Askar et al. (1970), we estimate: 
⃒
⃒
⃒ ü→

p⃒⃒
⃒

⃒
⃒
⃒E→

p⃒⃒
⃒
≈ 4.07 × 106 m2

s2V 

Maranganti and Sharma (2009) provide flexoelectric data for periclase (magnesia), from which we estimate: 
⃒
⃒
⃒ ü→

p⃒⃒
⃒

⃒
⃒
⃒E→

p⃒⃒
⃒
≈ 7.54 × 106 m2

s2V 

Using the material properties for ice from Petrenko (1993) with cp = 3800m/s e11 − f11 = 10V,aε0 + 1 = 1.01 we estimate: 
⃒
⃒
⃒ ü→

p⃒⃒
⃒

⃒
⃒
⃒E→

p⃒⃒
⃒
≈ 1.46 × 106 m2

s2V 

Inside the flexo-electric material the magnetization current is zero, something quite true for dielectrics. The magnetization due to 
the magnetic flux is M→ = χm B→/μ0(whereχm is the magnetic susceptibility of the materials). The magnetization current is zero and so J→m 

= ∇× M→ = 0→. Therefore∇× B→= ∇× (∇×A→) = 0→ and so∇× (∇ × (∇ × A→)) = − ∇2(∇ × A→) = 0→, and the magnetic flux is 
approximately harmonic∇2 B→ = ∇2(∇ × A→) ≈ 0→. Then we can approximate (3.6) as 

∇×
¨A→≈ ε− 1

0 ∇×
(
∇×

˙K→
)

(4.5) 

We now integrate (4.5) with respect to time once, assuming zero initial conditions ( ˙A→( x→,t = 0) = K→( x→,t = 0) = 0→) and recall that 
since∇ ⋅ K→= 0 we have∇× (∇ × K→) = − ∇2 K→. Then, (4.5) becomes 

∇×
˙A→≈ − ε− 1

0 ∇2 K→ (4.6) 

With the approximationℓ2
s |∇

4 K→| << |∇2 K→| and Eq. (2.11), Eq. (4.6) with (4.1) and (3.1) becomes 

∇×
˙A→+ ε− 1

0
1
c2

s

(
e44 − f12

a

)

∇2 ¨H→
∗

= − ∇ ×
˙E→

s
+ ε− 1

0
1
c2

s

(
e44 − f12

a

)

∇2 ¨H→≈ 0→ (4.7) 

We now integrate the left-hand side of (4.7) with respect to time once, assuming zero initial conditions (A→( x→,t = 0) =
˙H→( x→,t = 0)

= 0→). Since∇ ⋅ H→
∗

= 0, we have∇× (∇ ×
˙H→
∗

) = − ∇2 ˙H→
∗

= ∇×
˙u→

s
. Then using (3.2) and the constitutive law (2.19) we obtain 

(withc2
light = 1/(ε0μ0)): 

H→≈
c2

light

c2
s

(
e44 − f12

a

)

∇× u̇→
s

(4.8) 

Obviously then, the magnetic flux and the magnetic field are proportional to the curl of the mechanical (shear) velocity. 
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Taking the data for PMMA from Giannakopoulos and Rosakis (2020), we estimate: 
⃒
⃒
⃒H
→
⃒
⃒
⃒

|∇ × u̇→
s
|
= 5.361Cm− 1 

Taking the data for the minerals Tausonite (SrTiO3) and Macedonite (PbTiO3) from Giannakopoulos and Zisis(2021), we estimate: 
|H→|

|∇×
˙u→

s

|

= 180.0Cm− 1 and |H→|

|∇×
˙u→

s

|

= 510.0Cm− 1respectively 

Taking the data for the mineral periclase (magnesia), from Maranganti and Sharma (2009), we estimate: 
⃒
⃒
⃒H
→
⃒
⃒
⃒

|∇ × u̇→
s
|
= 1169Cm− 1 

Taking the shear velocity of ice 1934 m/s and the flexoelectric data similar to the longitudinal values, we obtain |H|

|∇×
˙u→

s

|

=

21.28Cm− 1. 
In summary, in this section we showed the (approximate) connections of the electric and magnetic fields with the shear acceler-

ations and the dilatation velocities, respectively, through the novel Eqs. (4.4) and (4.8). These important approximations connect the 
electromagnetic problem with the mechanical problem in the context of flexoelectricity. Finally, we gave some numerical estimates for 
materials and minerals for which sufficient material data exist. 

5. Analogy with the electro-magnetic field of the electrokinetic theory 

In this section we will prove an interesting analogy between the electromagnetic equations derived in the Section 2 for the flex-
oelectricity theory (Eqs. (2.18) and (2.20)) and the electromagnetic fields deduced by the well-established electrokinetic theory 
developed for fluid-saturated porous materials which is used extensively in geosciences. Pride and his coworkers (Pride, 1994; Pride 
and Haardsen, 1996; Pride and Garambois, 2005) established the modern electro kinetic theory which is a combination of a me-
chanical field developed by a fluid saturated porous material (non-magnetic dielectric mineral) and the Maxwell electromagnetic field. 
The solid and fluid phases are treated separately following the well-known theory of Biot in the context of what is called poroelasticity 
(see for example Biot (1962)). 

The coupling between the electromagnetic and the poroelastic response is established by transfer functions relating the small 
current (called electro filtration) that is allowed due to the electro kinetic coupling with the gradient of the fluid pressure∇pf and the 

solid phase acceleration multiplied by the fluid densityρf
¨u→solid (results that come from poroelasticity). The physical ground of the 

electro kinetics is the Stern’s electric double layer that forms between the fluid and the solid walls. Therefore, the total current J→
pe 

is 

found by adding the electro kinetic currentL0(− ∇pf +ρf
¨u→solid) with the usual Ohm’s currentϕσf E→

pe
/α∞ (the constants are the fluid 

densityρf [kgm− 3], the fluid electric conductivityσf [Sm− 1 = CV− 1s− 1], the porosityϕ and and the (electric) tortuosity of the poresα∞). On 

the other hand, the Darcy filtration velocity ˙w→ (which comes from poroelasticity), also couples with the electric field E→
pe 

through the 

same electro kinetic parameterL0[CmN− 1s− 1] (Onsager theorem) with the electric field creating what is called electro-osmosis, L0 E→
pe

. 
IfL0 = 0, then there is no electro kinetic coupling between the mechanical and the electrical problem. Otherwise, the total filtration 

velocity adds the influence of electro-osmosis to the standard Darcy’s law(ηf /kf )(− ∇pf +ρf
¨u→solid) (the constants are the fluid kine-

matic viscosityηf [Pas] and the fluid permeabilitykf [m2]). The initial full development of the theory of Pride was given in the frequency 
space since most of the many parameters that appear are functions of the frequency. 

As a start, we will omit the mechanical equilibrium and the constitutive laws of (linear and isotropic) poroelasticity, assuming that 
the poroelastic problem will communicate its results, namely the fluid pressure, the solid phase velocity and the filtration velocity 

(w→,pf , u→solid) . We will focus on the two Maxwell equations (with basic unknowns the electric E→
pe 

and the magnetic fieldH→
pe

) together 

with the two transfer equations for the electric current J→
pe 

and the filtration velocity ˙w→. The equations will be stated in the real time 
domain, assuming that the involved parameters take their steady-state values. This simplifying assumption holds good for frequencies 
below the transition frequency of Biot ω < ωt = ϕηf/(α∞kf ρf ), implying the dominance of the viscous forces over the inertial forces of 
the fluid motion. Determination of rock properties by low-frequency AC electro kinetics can be found in (Pengra et al., 1999) among 
others. The electro-kinetic transfer equations are as follows: 

J→
pe
= L0

(

− ∇pf + ρf g→0 + ρf ü→solid

)

+
ϕ

α∞
σf E→

pe
(5.1)  

ẇ→=
kf

ηf

(

− ∇pf + ρf g→0 + ρf ü→solid

)

+ L0 E→
pe

(5.2) 

The superscript pe stands for poro-elastic. Note that the original relations of Pride (1994) did not include the contribution of a 
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constant acceleration field g→0, e.g. Earth’s gravity 9.81 m/s2. Next we state the Maxwell equations (Faraday’s and Ampere’s 
respectively) as formulated by the electro kinetic theory: 

∇× H→
pe
= ε0

(
ϕ

α∞

(
εf − εs

)
+ εs

)
˙E→

pe
+ J→

pe
+

ϕ
α∞

σf ẇ→× B→0 (5.3)  

∇× E→
pe
= − μ0

˙H→
pe

(5.4)  

where the new constants are the dielectric constant (relative permittivity) of the fluidεf and the dielectric constant of the solid phaseεs. 

Note that the constant magnetic flux B→0 is assumed to pre-exist (e.g Earth’s magnetic flux which is about 0.32 μT, atmospheric 
magnetic flux etc). Therefore, the last term of (5.3) describes an electromotive force due to the fluid motion. 

The electro-kinetic problem defined by Pride (1994) involves through the electro-kinetic parameterL0[CmN− 1s− 1] two internal 
lengths, the Deby screening length d[m] and a length that has to do with the electric response of the fluid inside the pores of the material 
Λ[m] and is of the order of the pore radius. The electrokinetic parameter reads as: 

L0 = −
ϕ

α∞

ε0εf ζ
ηf

(

1 −
2d
Λ

)

≈ −
ϕ

α∞

ε0εf ζ
ηf

= − Cef σf (5.5) 

Eq. (5.5) introduces a new parameter, the zeta potentialζ[V] that describes the electric field at the solid-fluid interface (typically -20 
× 10− 3 V). A thorough account of the zeta potential can be found in (Reppert et al., 2001). The constantCef [V /Pa] is the electro 
filtration parameter that was introduced by various authors (see for example (Revil et al., 1999)) and is a quantity that can be measured 
(electric potential difference vs pressure difference) in place of the combination of other constants that are difficult to access. The Deby 
length (about 3 × 10− 10m) has been discussed thoroughly by Revil and Glover (1998) among others and is typically much less than the 
pore diameter2d << Λ. Walker and Glover (2010) relate the value ofΛ with the porosityϕ, the grain radiusrgrain and the electrical 
cementation exponent m (typically m=1.5), according to 

Λ ≈
ϕm

m
rgrain (5.6)  

and estimate it to be of order 40-80 × 10− 6m. 

We condense the above equations, aiming to develop a wave equation with respect to the electric field E→
pe 

and the filtration 

velocityw→. First we eliminate (− ∇pf +ρf g→0 +ρf
¨u→solid) from (5.1) and (5.2) and obtain: 

∇2 E→
pe
− ∇∇ ⋅ E→

pe
= μ0

ηf L0

kf
ẅ→+ μ0

ϕ
α∞

σf ẅ→× B→0 + μ0ε0

(
ϕ

α∞

(
εf − εs

)
+ εs

)
¨E→

pe

+μ0

(
ϕ

α∞
σf −

ηf L
2
0

kf

)
˙E→

pe
(5.7) 

Eq. (5.7) is a (linear) wave equation for the electric field with the last term describing a ‘diffusion’ effect for the electric field. 
Excluding this last term (which is true for small porosity), the rest of the equation resembles our flexoelectric Eq. (2.18), provided we 
accept a polarization vector of the form 

P→ →
ηf L0

kf
w→+

ϕ
α∞

σf w→× B→0 (5.8)  

a relative electric permittivity from the solid-fluid composite 

ε0 → ε0

(
ϕ

α∞

(
εf − εs

)
+ εs

)

(5.9)  

and the mappings 

E→ → E→
pe

H→ → H→
pe (5.10) 

Next, we eliminate(− ∇pf +ρf g→0 +ρf
¨u→solid) from (5.1) and (5.2) and obtain: 

∇2 H→
pe
− ∇

(
∇ ⋅ H→

pe)
= μ0

ηf L0

kf
∇× ẇ→ + μ0

ϕ
α∞

σf∇×

(

ẇ→× B→0

)

+ μ0ε0

(
ϕ

α∞

(
εf − εs

)
+ εs

)
¨H→

pe 

+μ0

(
ϕ

α∞
σf −

ηf L
2
0

kf

)
˙H→

pe
(5.11) 

Eq. (5.11) is a (linear) wave equation for the magnetic field with the last term describing a ‘diffusion’ effect for the magnetic field, 
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analogous to that found in the electric field (5.7). Excluding this last term (which is true for small porosity), the rest of the equation has 
a remarkable resemblance to our flexoelectric Eq. (2.20), provided we accept the analogy already found for the electric field (5.8), 
(5.9) and (5.10). Fig. 1 shows schematically the basic analogy between P→ andw→, implied by Eq. (5.8). Typical values of L0for uncon-
solidated soils is 0.7× 10− 8m2s− 1V− 1. The pressure gradient in earthquakes is 10+2 − 10+4N/m3and Eq. (5.1) provides electrical 
currents of the order10− 6 − 10− 4A/m2. 

Therefore, (5.8), (5.9) and (5.10) establish the fascinating analogy of the flexoelectric problem with the electro kinetic problem, as 
far as the electromagnetic fields are concerned. It is interesting to point the direct connection of the flexoelectric polarization vector P→

with the electrokinetic filtration vectorw→. Also note that flexoelectric polarization still exist, even if the electro kinetic coupling 
constant is absent from (5.8), thus covering models that tend to ignore the pure electro kinetic effectL0 = 0. All aforementioned 
constants can be directly measured or estimated from particular analyses. 

Omitting the “diffusion” terms of Eqs. (5.7) and (5.11) raises the issue of how much dissipation energy is neglected relative to the 
flexoelectric electric energy balance. Pride and Haartsen (1996) have found the electromagnetic energy balance as 

− ∇ ⋅
(

E→
pe
× H→

pe)
= H→

pe
⋅ ˙B→

pe
+ E→

pe
⋅
(

˙D→
pe
+ J→

pe
+

ϕ
α∞

σf ẇ→× B→0

)

(5.12)  

withD→
pe

= ε E→
pe

. Comparing (5.12) with (2.21) and taking into account (5.8), (5.9) and (5.10), we conclude that there is an additional 
energy rate term on the right hand side of (5.12). Subtracting (2.20) from (5.12) we obtain the dissipation energy rate as: 

− ∇ ⋅
(

E→
pe
× H→

pe)
+∇ ⋅

(
E→× H→

)
= E→

pe
⋅ E→

pe
(

ϕ
α∞

σf −
ηf L2

0

kf

)

(5.13)  

which for low porosity(ϕ < 1) is very small. A characteristic ‘diffusion’ time emerges from Eqs. (5.7) and (5.11), utilizing (5.5): 

td =
ε0

(
ϕ

α∞

(
εf − εs

)
+ εs

)

ϕ
α∞

(

σf +
(ε0εf ζ)

2

ηf k

) (5.14) 

For typical values of the constants, the order of this time scale is extremely small (10− 7 s), indicating a fast diffusion process for the 
electromagnetic field inside the porous material. 

In summary, in this section we have proven a remarkable novel analogy between the electromagnetic results of the flexoelectric 
theory and the electromagnetic results of the electrokinetic theory, provided we ignore the small diffusion term present in the elec-
trokinetic theory (the flexoelectric theory did not include dissipative terms). The analogy is established by recognizing the similarity 
between the polarization and the fluid filtration velocity through quations (5.8-5.10). In this respect, the electric and magnetic fields 

Fig. 1. A simple schematic showing the basic electro-magnetic analogy between (a) a poroelastic material with electrokinetic coupling and (b) a 
flexoelectric material. The solid grains of the poroelastic materials (s) are shown schematically as squares with the fluid phase (f) flowing around 
them. The connectivity of the fluid channels is far more complex than what is shown in the schematic. The poroelastic material under a gradient of 
the fluid pressurepf , develops the fluid infiltration velocity fieldw→between the solid grains of the material. The flexoelectric material under a gradient of 

the electric potentialΦ develops an electric field E→hence and a polarization field P→. In the absence of electro-magnetic and mechanical body forces the 
two vector fields (w→, P→) are proportional. 
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are similar in both theories: Eq. (5.7) with (2.18) and Eq. (5.11) with (2.20). 

6. Seismoelectric transfer functions 

In this section we will review the application of Pride’s electrokinetic theory in the analysis of coseismic electromagnetic fields that 
are observed in earthquakes. The outcome is the connection between the electric field and the dilatation acceleration and between the 
magnetic field and the curl of the shear velocity. What is of interest to us is the analogies with the flexoelectric results given by Eqs. 
(4.4) and (4.8) derived in Section 4. In doing so, we will provide relations between the material constants used in electrokinetics and 
the material constants used in flexoelectricity. 

Bordes et al. (2015) based on Pride’s results (see section 5) found the low frequency expression of the coseismic seismoelectric field 
(under harmonic response) as: 

E→
pe
= E→

p
+ i E→

s
(6.1) 

That is the electric filed breaks into an in-phase field that related to the P-waves and an out of phase (at π/2 angle) field related to 
the S-waves, with the in phase electric field to dominate. Bordes et al. (2015) estimate that 

E→
p
≈ − Cef ρf

(

1 −
ρt

ρf

C
H

)

ü→
p

(6.2) 

The new parameters in (6.2) are the C and H [Pa] elastic moduli of Biot (1962), which have been discussed in various publications 
and its ratio can usually be neglected (C/H<1), and the average material densityρt = ϕρf + (1 − ϕ)ρs. An equation similar to (6.2) was 
found first by Garambois and Dietrich (2001). The shear related electric field was estimated by Bordes et al. (2015) to be 

E→
s
≈ Cef ρf

μ0

ω
ϕ

α∞

G
ρt

σf ü→
s

(6.3) 

Note that the result (6.3) depends on the frequencyω.Both approximations (6.2) and (6.3) were found to be exact for frequencies 
below a critical value: 

ω <
ϕηf

α∞kf ρf
(6.4) 

According to our flexoelectric analogue, Eq. (6.2) has the same form as our Eq. (4.4), provided we map the flexoelectric constants 
as: 

1
c2

p

e11 − f11

aε0 + 1
→ Cef ρf

(

1 −
ρt

ρf

C
H

)

(6.5) 

Next, assume that the magnetic field is due to the shear part of the electric potential. Then, Ampere’s law (5.4) is satisfied by taking 
the curl of (6.3) and so 

˙H→
pe
≈ − μ− 1

0 ∇× E→
s
≈ − Cef ρf

1
ω

ϕ
α∞

G
ρt

σf∇× ü→
s

(6.6) 

Integrating (6.6) once with respect to time assuming zero initial conditions for the velocity and the magnetic field, we obtain 

H→
pe
≈ − Cef ρf

1
ω

ϕ
α∞

G
ρt

σf∇× u̇→
s

(6.7) 

Eq. (6.7) has the same form as Eq. (4.8), provided we map the flexoelectric constants according to 

c2
light

c2
s

(
e44 − f12

a

)

→ − Cef ρf
1
ω

ϕ
α∞

G
ρt

σf (6.8) 

Hence, the flexoelectric analogue provides two relations between the constants of flexoelectricity and the electro kinetic poroe-
lasticity, (6.5) and (6.8). 

Regarding the magnetic field transfer equation, we point at another estimate proposed by Garambois and Dietrich (2001), 

⃒
⃒
⃒H
→pe⃒⃒

⃒ ≈ ρf
ϕ

α∞

ε0εf |ζ|
ηf

̅̅̅̅
G
ρt

√

| u̇→
s
| (6.9) 

For harmonic responses, Eq. (6.9) is similar to Eq. (6.7), if we note from (5.5) that − ϕ
α∞

ε0εf ζ
ηf

= − Cef σf , that the gradient operator 

corresponds in the frequency domain to multiplication with the wave number k, and thatk/ω ≈
̅̅̅̅̅̅̅̅̅̅
ρt/G

√
. 

It is interesting to examine the relative magnitude of the flexoelectric constants under the prism of the analogy with the electro- 
kinetic equivalents (6.5) and (6.8). Their ratio is given by 
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χ
χ + 1

e11 − f11

e44 − f12
→ − ω ε0

σf

α∞

ϕ

(

1 −
ρt

ρf

C
H

) c2
lightc2

p

c4
s

(6.10) 

Typical values of the parameters on the right hand side of (6.10) and for low values of frequency lead to the conclusion that 

χ
χ + 1

e11 − f11

e44 − f12
>> 1 (6.11) 

This result and the results of (2.13) and (2.14) necessitates the conclusion ℓs ≈ hs while ℓp < hp. In the context of the problem of 
supershear ruptures propagating in flexoelectric materials (e.g. PMMA or Rocks) and the experimental observation of both shear and 
dilatational Mach lines at their tips discussed in the introduction (Rosakis et al., 2020; Gori et al., 2018), the observation that ℓs ≈ hs 

means that the shear type of Mach lines would have a slope similar to that predicted by classical elastodynamics where gradient effects are 
neglected. On the other hand the fact that, ℓp < hp,will generally hold, means that the dilatational type of Mach lines have a slope less than 
that predicted by classical elastodynamics as is shown by the fast rupture experiments performed in PMMA and as theoretically explained 
by Giannakopoulos and Rosakis (2020) . 

We now examine a specific example of sea ice that can be assessed from both flexoelectric and electrokinetic models. Williams and 
Francois (1991) suggested that ice can be mechanically viewed as a Biot solid with very small water porosity. They measured the 
p-wave velocity and mass density as functions of temperature and salinity, typical values arecp ≈ 3800m/s,ρf ≈ 1000kg/m3. Drzymala 
et al. (1999) measured the ice/water zeta potential as a function of the PH of the water, a typical value isζ ≈ − 27V. Artemov (2019) 
estimated the electrical conductivity of the brine, a typical value isσf ≈ 3.1× 10− 3S/m. Finally, the dynamic viscosity of brine is3 ×
10− 3Pas and the dielectric constant of ice isχ + 1 ≈ 100. Then Eq. (6.3) givese11 − f11 ≈ 40V, which is comparable to the value of 10V 
estimated by Evtushenko et al. (1987). 

Garambois and Dietrich (2001) report measurements of unconsolidated porous medium with different levels of salinity to be in the 
range: 

⃒
⃒
⃒ ü→

p⃒⃒
⃒

⃒
⃒
⃒E→

p⃒⃒
⃒
≈ 171 − 717

m2

s2V 

This result is lower than the results found for flexoelectric materials (see Section 4). On some other results from (Bordes et al., 2008) 
for saturated Fontainebleau sand and frequency ω = 1s− 1, we estimate: 

⃒
⃒
⃒H
→pe⃒⃒

⃒

|∇ × u̇→
s
|
= 1.466Cm− 1 

From (Bordes et al., 2015) for saturated silica sand and frequencyω = 1s− 1, we obtain: 
⃒
⃒
⃒H
→pe⃒⃒

⃒

|∇ × u̇→
s
|
= 0.02689Cm− 1 

This number is of the same order of magnitude as that found from (Garambois and Dietrich, 2001) who have employed an entirely 
different approach. These results are comparable to those we found for flexoelectric materials (see Section 4). 

In summary, we have shown that the flexoelectric analogy with the electrokinetic theory can be used for the analytic and 
experimental investigation of the coseismic electromagnetic emissions of earthquakes, provided that the material constants can be 
mapped according to the novel Eqs. (6.5) and (6.8). These relations are of great importance for the laboratory investigations of 
earthquakes, because flexoelectric materials can be utilized as analogue materials in the experiments. 

7. Plane waves in homogeneous, isotropic flexoelectric and poroelastic materials 

In this section we provide an application of previous results in the context of plane waves. Consider dilatational polarization plane 
waves in homogeneous flexoelectric materials. The electric field can be derived from Eq. (4.4) and drives a zero net current. Therefore 
it does not create a magnetic field. We then investigate shear plane waves and assume, without loss of generality, a shear plane wave 
that propagates in the x1 direction (x1, x2, x3 the Cartesian reference system) of the form: 

us
2(ξ) = us

2(x1 − cst)

us
3(ξ) = us

3(x1 − cst)
(7.1) 

The shear wave speedcs can be obtained by inserting Eq. (7.1) into Eq. (2.9) and observing that the higher derivatives can be 
eliminated with a shear wave speedcs = cs(ℓs /hs). Sinceℓs/hs ≤ 1, we havecs ≤ cs, that is the shear wave speed can be slower than the 
classic one. A similar analysis can be performed with a dilatational plane wave of the formup

1(ξ) = up
1(x1 − cpt), which can be inserted 

in Eq. (2.8) and provide a dilatation wave speedcp = cp(ℓp /hp). Sinceℓp/hp ≤ 1 also in this case, we havecp ≤ cp, that is the dilatation 
wave speed can be slower than the classic one. 
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Replacing Eq. (7.1) into (4.7) and into (4.8), we obtain respectively the approximate forms: 

Es
2

H3
≈

− üs
2

∂u̇s
2

/
∂x1

μ0 = μ0cs

Es
3

H2
≈

− üs
3

− ∂u̇s
3

/
∂x1

μ0 = − μ0cs

(7.2) 

The same results as (7.2) will be obtained, if we replace Eq. (7.1) into the poroelastic estimates (6.2) and (6.7) respectively. 
Now consider dilatational harmonic plane waves in homogeneous poroelastic materials. The electric field can be derived from Eq. 

(6.2) and drives a zero net current. Therefore it does not create a magnetic field. Assume next, without loss of generality, a shear 
harmonic plane wave that propagates in the x1 direction with slownessss = 1/cs. The shear displacements are: 

Fig. 2. A shear plane wave, traveling with velocitycs = cs(ℓs /hs) in the x1–direction. (a) The shear electric field vector(Es
2, Es

3) is analogous and 
opposite of the acceleration vector(ü2, ü3). (b) The velocity curl vector(− ∂u̇s

3 /∂x1, ∂u̇s
2 /∂x1) creates the magnetic field vector(H2,H3) analogous to 

the velocity curl. 
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us
2 = us0

2 exp[ − iω(t − ssx1)]

us
3 = us0

3 exp[ − iω(t − ssx1)]

(7.3) 

In this case, due to the relative fluid-solid motion, a streaming current Jpe
1 will be generated. This current will induce a magnetic 

field with componentsHpe
2 andHpe

3 which are orthogonal to the wave (and current) direction, according to Ampere’s law. The magnetic 
components are given by Eq. (6.7) with 

∂
∂x1

u̇s
2 = us0

2 ω2ssexp[ − iω(t − ssx1)]

∂
∂x1

u̇s
3 = us0

3 ω2ssexp[ − iω(t − ssx1)]

(7.4) 

Thus, the magnetic field moves inside the shear plane and, due to Faraday’s law, it will create an electric field. The corresponding 
electric field has Es

2 and Es
3 components that can be derived from Eq. (6.3) with 

üs
2 = − us0

2 ω2exp[ − iω(t − ssx1)]

üs
3 = − us0

3 ω2exp[ − iω(t − ssx1)]

(7.5) 

Therefore, magnetic activity is expected only for shear shock waves and electric activity is expected for both shear and dilatation 
waves. 

The relation between the components of the electric and the magnetic field can be easily computed, giving the simple relations: 

Es
2

H3
=

− üs
2

∂u̇s
2

/
∂x1

μ0 = μ0
1
ss
= μ0cs

Es
3

H2
=

− üs
3

− ∂u̇s
3

/
∂x1

μ0 = − μ0
1
ss
= − μ0cs

(7.6) 

The same results as Eq. (7.6) will be obtained, if we replace (7.3) into the flexoelectric estimates (4.7) and (4.8) respectively. The 
shear wave velocity of many rocks is of the order of 3000m/s, see (Simmons, 1964). This means that the ratio of the electric to the 
magnetic field as predicted by Eq. (7.6) is of the order of0.4× 10− 2V/A. Mizutani et al. (1976) estimated that the electric fields were of 
the order of0.7× (10− 6 − 10− 3)V/m, whereas the magnetic fields were of the order of1.6× (10− 4 − 10− 1)A/m, with their ratio falling 
within the prediction of Eq. (7.6). 

We conclude that the same ratios of the electric to the magnetic fields were found for both the flexoelectric and the poroelastic 
materials, as expected from the electric analogy we have established. On this plane, the shear part of the electric fieldEs

2 in the 
x2–direction generates a magnetic fieldH3 in the x3–direction. The shear part of the electric fieldEs

3 in the x3–direction generates a 
magnetic fieldH2 in the x2–direction. Fig. 2a shows the shear electric field vector(Es

2, Es
3), which is analogous and opposite of the 

acceleration vector(ü2, ü3). Fig. 2b shows the velocity curl vector(− ∂u̇s
3 /∂x1, ∂u̇s

2 /∂x1) that creates the magnetic field vector(H2,H3)

analogous to the velocity curl. A properly located magnetometer (e.g. a coil directed in a magnetic field axis) can measure the magnetic 
field and a properly located potentiometer (e.g. electrodes attached along an electric field axis) can measure the electric field, as shown 
in Fig. 2a. Magnetic fields can be carried along by mechanical shear waves only. This is illustrated in Fig. 2 which shows a shear plane 
wave, traveling with velocitycs in the x1–direction. 

8. Conclusions 

We have extended the flexoelectric analysis in an uncoupled electromagnetic theory and found that the electric field is proportional 
to the dilatation mechanical (particle) acceleration and the magnetic flux and the magnetic field are proportional to the mechanical 
(particle) velocity. Remarkably, our theory seems to be analogous to the electro kinetic poroelasticity theory of Pride which is based on 
an entirely different set of assumptions and has been used to assess seismo-magnetic phenomena and measurements. We have 
established an electric analogue through the flexoelectric response, by representing the relative fluid-grain velocity with the flexo-
electric polarization that depends on the mechanical strain gradients. The rate of the electric displacement of flexoelectricity replaces 
the streaming current of electro kinetic poroelasticity. Physically, at a microscopic level, the two models have in common the com-
bined electrons and ions that in flexoelectricity come from polarization due to strain gradient and in porous materials come from 
wetting fluids that form electric double layers in the porous channels. The analogy is completed upon recognition that the diffusion 
effect of the electric field (due to the viscosity of poroelasticity) is often small. 

The novel aspects of our present analysis can be summarized in the following relations:  

(a) The governing equations of the electric field (2.18) and the magnetic field (2.20) based on the polarization vector found from 
our previous work.  

(b) The connection of the electrodynamic potentials with the polarization potentials through Eqs. (3.5) and (3.6). 
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(c) The approximate solutions for the electric (4.4) and the magnetic (4.8) fields as functions of the dilatational acceleration and the 
curl of the shear velocity, respectively.  

(d) The corresponding mappings (5.8-5.10) that establish the analogy of the flexoelectric theory with the electrokinetic theory of 
wetted porous materials.  

(e) The mappings (6.5) and (6.8) that establish the relation between the material properties used in the flexoelectric theory and the 
electrokinetic theory for wetted porous materials. 

In addition to rocks (e.g. sandstone, marble, limestone), ice and other material systems of importance to geophysics, the results are 
also important for all dielectrics such as ceramics, perovskites and polymers that exhibit strong flexoelectric effect, often uncoupled 
from piezoelectricity (centrosymmetric materials). Moreover, our conclusions also apply to certain nano-composites and atomistic 
models that can be approached in the context of couple stress elasticity. In such cases, the origin of the micro-structural and micro- 
inertial lengths is very different that the one proposed in this work. 

Flexoelectricity is currently used in many applications, and in particular in energy harvesting devices that collect electric energy, 
using the electric fields that are created from mechanical vibrations and then harvested by surface attached electrodes, see for example 
Deng et al. (2014), Deng and Shen (2018), Mura and Erturk (2017). For a recent review on flexoelectric energy harvesting technology 
see Tripathy et al. (2021). However, the magnetic aspects of flexoelectricity are far less exploited in device applications, let alone 
analytical and numerical investigations. We believe that our present work will serve as a building step for flexoelectric applications 
that involve the ensuing magnetic fields such as remotely operating sensors and actuators, nanocompasses and nanocoils, Gianna-
kopoulos and Rosakis (2022). 
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Appendix A 

The flexoelectric constitutive equations are:  

a Cauchy (symmetric) stress tensor: 

σij =
∂W
∂εij

= cijklεkl + eklijPl,k    

b Dipolar stress tensor: 

τijk =
∂W
∂εjk,i

= flijkPl    

c Effective local electric force: 

Ek = −
∂W
∂Pk

= −
(
akjPj + fklijεij,l

)

d Polarization gradient force: 

Eij =
∂W
∂Pj,i

= bijklPl,k + eijklεkl + b0
ij 
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We will concentrate in the isotropic response and in this case the constitutive property tensors become: 

aij = aδij  

cijkl = c12δijδkl + c44
(
δikδjl + δjkδil

)

fijkl = f12δijδkl + f44
(
δikδjl + δjkδil

)

eijkl = e12δijδkl + e44
(
δikδjl + δjkδil

)

bijkl = b12δijδkl + b44
(
δikδjl + δjkδil

)
+ b77

(
δikδjl − δjkδil

)

b0
ij = b0δij  

where δij is Kronecker’s delta (identity tensor). Using Hamilton’s principle (least action), that is minimizing the total electric enthalpy 
with respect to ui and Pi in the whole body volume V and for arbitrary time interval (0, t1), 

∫ t2

0

∫

V
δ(H − T)dVdt = 0  

we obtain the Euler conditions for all the material points of the body (in the presence of body forces Xi [N/m3] and initial electric field 
E0

i [N/C]):  

a Conservation of linear momentum: 

σji,j − τkji,jk + Xi = ρüi    

b Conservation of electric field: 

Ej + Eij,i + Ej + E0
j = 0    

c Gauss’ law (absence of free charges) inside the body: 

ε0Ei ,i + Pi,i = 0    

d Maxwell-Faraday (static) equations outside the body of perfect insulators in absence of magnetic flux: 

∇× E→= 0→

where ∇is the gradient operator, or, using the alternating Levi-Civita tensor,εijkEk,j = 0. This last equation defines a potential Φ, so that 
Ei = − Φ,i. 

Assuming zero body forces and initial electric field (Xi = 0[N /m3], E0
i = 0[N /C]) in the conservation of linear momentum and 

conservation of electric field, we obtain the two Cauchy-Navier types of equations: 

c44∇
2ui + (c12 + c44)∇i(∇kuk) + (e44 − f12)∇

2Pi + (e12 + e44 − 2f44)∇i(∇kPk) = ρüi  

(e44 − f12)∇
2ui + (e12 + e44 − 2f44)∇i(∇kuk) + (b44 + b77)∇

2Pi + (b12 + b44 − b77)∇i(∇kPk)

− aPi + Ei = 0  

supplemented by the Gauss law: 

ε0Ei ,i + Pi,i = 0  

where∇2 = ∇k∇k = ∂2/∂x2
1 + ∂2/∂x2

2 + ∂2/∂x2
3 is the Laplacian operator, ∇4 = ∇2∇2 is the biharmonic operator. Note that, iffijkl =

0,eijkl = 0 andaij = 0, we obtain the classic elastodynamic equations. The above three partial differential equations are the initial 

governing equations of the flexoelectric problem regarding the mechanical displacement field u→ and the polarization field P→. 
By taking the divergent of the second Cauchy-Navier type equation and using Gauss equation, we eliminate the electric field to 
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obtain: 

(e44 − f12)∇ ⋅ ∇2 u→+ (e12 + e44 − 2f44)∇
2∇ ⋅ u→

+(b44 + b77)∇ ⋅ ∇2 P→+ (b12 + b44 − b77)∇
2∇ ⋅ P→−

(
a + ε− 1

0

)
∇2∇ ⋅ P→= 0 

Thus the reformulation of the problem leads to solving two coupled equations with respect to the displacement vectorui and the 
polarization vectorPi from the two condensed governing equations: 

c44∇
2 u→+ (c12 + c44)∇(∇ ⋅ u→) + (e44 − f12)∇

2 P→+ (e12 + e44 − 2f44)∇(∇ ⋅ P) = ρ ü→

(e44 − f12)∇ ⋅ ∇2 u→+ (e12 + e44 − 2f44)∇
2∇ ⋅ u→

+(b44 + b77)∇ ⋅ ∇2 P→+ (b12 + b44 − b77)∇
2∇ ⋅ P→−

(
a + ε− 1

0

)
∇2∇ ⋅ P→= 0  

Appendix B 

As discussed in the main text in detail, the solution for P→ from the above equations allows us to solve for the magnetic flux B→ and the 
electric field E→ within the context of weak magnetic interaction by using the following relations: 

∇× E→+
˙B→= 0→

∇ ⋅ B→= 0  

∇× B→− μ0ε0
˙E→− μ0

˙P→= 0  

with appropriate boundary conditions. Let n→ be the unit vector normal to the dielectric (body 1) pointing outside the body. Then from 
the integral form of Faraday’s law we have the condition: 

n→×
(

E→
(2)

− E→
(1))

= 0→

If a known surface free charge densityσs [C/m2] is applied through adsorption on the dielectric body: 

n→ ⋅
(

D→
(2)

− D→
(1))

= σs  

where the electric displacement field is defined by D→ = ε0 E→+ P→. 
From the integral form of Gauss’ law for magnetism (absence of free magnetic poles) we have the condition: 

n→ ⋅
(

B→
(2)

− B→
(1))

= 0 

From the integral form of the Ampere’s law, if a known surface free current density j
→

s [A/m2] is applied through electrodes 
attached on the dielectric body, we have: 

n→×
(

H→
(2)

− H→
(1))

= j→s 

The electric boundary conditions can be materialized with appropriate steady state currents applied by surface conductors. 
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