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1. Abstract 

This work examines the sub-shear and super-shear steady state growth of mode III fractures in 

flexoelectric materials, non the less, exhibiting Mach type shock wave patterns that resemble 

reported lattice dynamics results and three-dimensional calculations and experiments. Our 

mathematical models provide weak discontinuous solutions of the steady state dynamic 

equations. In flexoelectric solids, super-shear rupture is possible with Mach lines appearing at 

sub-shear as well as super-shear crack rupture velocities. This is contrary to classical singular 

elastodynamics, where the notions of super-shear growth and hyperbolicity coincide. The 

results show that the deformation near the crack-tip agrees with studies based on lattice 

dynamics. In the first part of this work, a novel finite element approach has been developed 

where the problem is decomposed in two prestressed plates which are interconnected, resulting 

into the predicted radiation patterns and Mach lines. The polarization field is obtained from the 

calculated displacement field and is used in turn to calculate the magnetic and the electric fields. 

The analysis offers an analogy to the co-seismic magnetic fields encountered during mode III 

dominated earthquake rupture events.  

Keywords: Magneto-flexoelectricity, mode III crack, hyperbolic, steady state, co-seismic 

magnetic fields. 
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2. Introduction 

Flexoelectricity describes the coupling between non-uniform strain fields and electric 

polarization fields in all dielectric materials [1–6]. This universal effect increases with 

decreasing sampling size and carries great impact on materials and devices. Recent theoretical 

work on flexoelectrics, including dynamic effects, can be found for example in [7–10]. Mode 

III fracture is important in several types of failure. For example, mode III delamination growth 

can occur in a variety of situations encountered in laminated composites. Tvergaard and 

Hutchinson [11] highlighted the major influence that mode III fracture processes play in thin 

film delamination problems. Within the context of singular classical elastodynamics, a mode 

III crack cannot propagate super-sonically in homogeneous solids [12,13]. Yu and Yang [12] 

investigated the transonic debonding of bimaterial interfaces under anti-plane shear conditions. 

They found that the debonding speed cannot exceed the higher shear wave speed provided that 

the energy which flows through the interface is bounded. Forced growth at forbidden velocities 

may however become possible under crack-tip wedging conditions [14] On the same problem, 

Huang et al. [15] proved that for propagating mode III interface cracks, a line of stress 

singularity (Mach line) emitted from the propagating crack-tip is possible only in the material 

with the smaller shear wave speed [16].  

The physical attainability of Mode II super-shear rupture growth was theorized by [14,17–19] 

in a series of theoretical and numerical works. However, such a phenomenon was never 

observed in nature up to that time. The first experimental proof of the existence of super-shear 

rupture was obtained by Rosakis and his co-workers under both conditions of impact (in 

coherent interfaces) [20] and static far-field loading (in frictional interfaces) [21]. The early 

work on this subject, including the observation of the mechanism of rupture transition from 

sub-Rayleigh to super-shear rupture speeds are summarized in two review papers, [22,23], and 

discussed in the context of classical elastodynamics. Indeed, from the theoretical point of view, 

transition to super-shear from sub-Rayleigh mode II rupture can be facilitated by assuming the 

existence of cohesive zones [24]. Moreover, Rosakis [25] showed that when strain gradient 

effects are included in the Pierls potential, a kinetic relation for the uniformly moving 

dislocation can predict intersonic and even super-sonic speeds at high enough Peach-Koehler 

stresses. This observation has provided an early hint of the effect of strain gradients in allowing 

transitions to both super-shear and even super-sonic rupture speeds and is a motivation for the 

present study. Super-shear transition may also be found triggered by heterogeneous interfaces 

(e.g. cohesive stress drop or decrease in fracture energy), see for example [26,27]. Finally, in a 

three-dimensional rupture setting, local mode III super-shear rupture has been theoretically and 

experimentally found to follow a predominately mode II super-shear rupture of a plate with 

finite thickness [28]. For early pioneering work on 3-D self-similar rupture of penny-shaped 

cracks subjected to shear loading see [29]. 

In the nano scale, local stiffening of the material due to finite deformation, in a class of lattice 

models was shown to produce super-shear crack propagation in mode II [30] and super-shear 

rupture growth in mode II. Atomistic calculations by [13] in mode II and [31] in mode III have 

predicted super-shear and even super-sonic transitions. Such transitions have also been 

predicted for mode III ruptures by [32] in the context of large strain elasticity and stiffening 

potentials. 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Applied Mechanics. Received January 16, 2023;
Accepted manuscript posted February 08, 2023. doi:10.1115/1.4056914
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/doi/10.1115/1.4056914/6989803/jam
-23-1019.pdf by C

alifornia Institute of Technology user on 28 April 2023



3 
 

Although in all cases the authors attribute this phenomenon to the presence of stiffening due to 

large strains and stiffening at the rupture tip, the presence of locally dominant lattice length 

scales; pointing to the possible importance of strain gradient effects should also be noted. 

Moreover, Koizumi et al. [33] also showed that super-shear mode III crack motion is possible 

for harmonic lattices. They were first to claim that due to the dispersion in a linear lattice, a 

crack moving at any speed is by definition faster than wave speeds in the part of the dispersion 

curve in the short wavelength limit. This provides further evidence of the importance of local 

length scale and strain gradients. The discreteness of their lattice model removes the singular 

nature of the wave speeds in the long wavelength limit. Koizumi et al. [33] also calculated the 

radiation patterns of lattice wave emission from moving mode III cracks (mode III super-shear 

crack growth can be predicted for a stiffening hyperelastic material behavior, with sufficient 

prestressing [32]). Consistent with the above discussion, Guozden, et al. [34] revisited the 

super-shear mode III cracking in lattice models and concluded that material stiffening or 

dissipation are not prerequisites for super-sonic mode III cracking, as long as near tip 

instabilities are suppressed. They also showed that the crack speed is a function of the strain at 

the vicinity of the crack-tip.  

Sporadic evidence of super-shear rupture bursts has been reported relation to the Imperial 

Valley Earthquake [35]. Super-shear rupture velocities have also been conclusively 

documented to occur in large earthquakes such as the 1999 Ismit, the 2002 Denali and the 

Kunlunshan Earthquakes [36–39]. Such activity has been related to electrokinetic effects [40], 

which have been shown by Giannakopoulos and Rosakis [41] to be analogous to the magneto-

flexoelectric phenomena. However, following the experimental discovery of super-shear 

rupture velocities in the laboratory [20,21], such large earthquake events may have the ability 

to trigger measurable electric [42] and magnetic potential change [43,44] and are another 

motivation for this study. Although such co-seismic emission has long been suspected to occur 

during large earthquakes [45,46], so far there has been no connection theorized between their 

occurrence and the presence of super-shear rupture growth prior to the recent work by [41]. 

The hyperbolic regime of mode III steady state rupture growth in flexoelectrics has first been 

examined in [47]. The problem decouples to mechanical and to electrical field equations which 

can be solved in sequence, starting from the autonomous solution of the displacement field and 

subsequently deriving the associated electrical field. Finally, the steady state electrical field 

(polarization condition) also produces a steady state electromagnetic field that accompanies the 

displacement and the polarization field as generally shown by [41]. This offers a possible 

quantitative explanation of the observed electromagnetic radiation that has been recorded to 

accompany rock fracture [46,48–50], fracture of ice [51–53] in addition to the electromagnetic 

activity (via the magneto-flexoelectric - electrokinetic analogy) related to earthquakes 

discussed above. 

Motivated by the laboratory, field observations and modelling analysis discussed earlier, in the 

first part of this work, we analyze the hyperbolic mode III steady state rupture regime in 

flexoelectric materials and develop a new finite element methodology to solve the hyperbolic 

governing equations that control the out-of-plane displacements and ensuing electromagnetic 

fields. We focus on the development of Mach lines and highlight the differences with the 

predictions of classic elastodynamics. Then-on, we also capture and analyze the polarization 
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and the magnetic fields that follow the displacement problem. In the second part of this paper, 

we focus on the asymptotic analysis in the vicinity of the crack-tip.  

3. The general formulation 

Under anti-plane formulation the flexoelectric problem has two primary variables: the out-of-

plane displacement 3 1 2( , , ) [m]u x x t  and the out-of-plane polarizations 2

3 1 2( , , ) [Cm ]P x x t − , 

where 1 2,x x  are the plane coordinates and t  is the time. The energy density of a flexoelectric 

material can be written as (where ,( ) ( ) /i ix =    ): 

 
( )( ) ( ) ( )

( ) ( ) ( )

2 2 2

3 44 77 3,1 3,2 44 13 31 3,1 23 32 3,2

2 2

12 13,1 31,1 3 23,2 32,2 3 13 23

1
2

2

2 2

U aP b b P P e P P

f P P

   

      

 = + + + + + + + 

 + + + + + + 

 (3.1) 

For the general formulation see [54–56]. Giannakopoulos and Zisis [47,57,58], have shown 

that in the absence of body forces and initial electric field, one can write the following two 

uncoupled p.d.e.’s with respect to the two primary variables of the problem ( 2 2
3 3 /u u t=   ).  

1. The displacement equation (wave equation): 

 
2 2

2 4 2

3 3 3 3
2 12

H
u u u u


   −  = −   (3.2) 

2. The polarization equation (follower equation) of the anti-plane flexoelectric 

problem is: 

 
( )2

44 122

3 3 3
2

e f
P P u

a





−
−  =  (3.3) 

In eqs (3.2) and (3.3) we find a “microstructural length” / 2  and a “micro-inertial length” 

/ 12H  related to the corresponding flexoelectric parameters: 

 
( )

22
44 1244 77 0

2

e fb b

a a

−+
= −   (3.4.a) 

 
2 2

44 77

12 2

b bH

a

+
=   (3.4.b) 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Applied Mechanics. Received January 16, 2023;
Accepted manuscript posted February 08, 2023. doi:10.1115/1.4056914
Copyright © 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/doi/10.1115/1.4056914/6989803/jam
-23-1019.pdf by C

alifornia Institute of Technology user on 28 April 2023



5 
 

The material constants are the atomistic radius 0[m]a , the density 3[kg m ] , −  the shear 

modulus 2[N m ], −  the flexoelectric constant 1

12 [NmC ],f −  the reciprocal dielectric constant 

2 -2[N m C ],a  the inverse flexoelectric constant 1

44 [NmC ]e − , the gradient polarization 

constant 4 -2

44 77( ) [Nm C ]b b+  and 2

max [C/ m ]P  is the polarization strength. Typical values of 

the constants of some flexoelectric materials are shown in Table 1 [57]. Note that the material 

parameters must obey the inequalities suggested by eqs. (3.4.a) and (3.4.b), in order for the 

energy density to be positive definite and hence provide uniqueness conditions. Otherwise, the 

constitutive laws must include other stabilizing terms, e.g. strain gradient effects [59]. 

Table 1. The characteristic constants of three flexoelectric materials [57]. 

Parameter Dimension Material 

  3SrTiO  3KTaO  KC  

0a  nm  0.391 0.399 0.314 

  3kg m  5174 6970 1980 

44c =  GPa  122 107 6.8 

a  
8 2 210 N m C  2.12 0.355 243 

44 77b b+  9 4 210 N m C−
 2.00 0.435 1.20 

44 12e f−  Nm C = V  -10.00 6.00 -2.15 

maxP  2
mC cm  42 24 − 

sc  m s  4856 3910 1853 

12H  nm  3.07 3.50 0.222 

2  nm  2.36 1.66 0.146 

( )6H  −  1.30 2.11 1.52 

 

In Figure 1 we show the steady state mode III (anti-plane) crack problem with constant rupture 

velocity V  in an infinite plane 1 2( , ).x x  The fields 3u  and 3P  are antisymmetric with respect 

to the 2 .x axis−  According to Figure 1, the steady state problem can be casted by changing the 

coordinates to a moving with the crack-tip coordinate system: 

 1x V t = +   (3.5.a) 

 2x =  (3.5.b) 

and thus, (3.2) transforms to: 

 
2 2 4 4 42 2 2 2 2 2 2 2

3 3 3 3 3

2 2 2 2 2 4 2 2 2 2 4
1 1 2 0

2 6 2 6 2s s s

u u u u uV V H V H

c c c     

         
− + − − − − − =     

          
 (3.6) 
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This differential equation must be solved for 3 ( , )u    with the proper boundary conditions 

(B.C.). The traction type boundary conditions are; 

 
( )3 3 32 2 2

323 3 3 3

3 2 2 22 12 s

tu u u uV

c



      

    
− − + + = 

      
 (3.7) 

 
( )22

33

22

ru 

 


=


 (3.8) 

where 2

3( )[ / ]t m   and 3 ( ) [ / ]r N m  are described along the crack face and according to [56]; 

3 44 3( ) ( )r f P = . The kinematic conditions conjugate to (3.7) and (3.8) are 3u  and 3 /u    

respectively. Interestingly, eqs. (3.6) - (3.8) are similar to those obtained in couple stress 

elasticity under anti-plane steady state conditions [60] and in dipolar gradient elasticity [61]. 

The steady state differential equation of the polarization in the flexoelectric anti-plane problem 

can be obtained from (3.3):  

 
( )2 2 22

44 1223 3 3
3 2 2 22

e fP P u
P V

a



   

−   
− + = 

   
 (3.9) 

Depending on the magnitude of the microstructural length ratio / ( 6),H the character of eq. 

(3.6) may change from elliptic to hyperbolic in respect to the values of the ratios 
2 2 2( ) / (6 ) and / ( 6)V H H   (see Figure 2). The present work focuses on the hyperbolic 

conditions: 

 
2 2

2
1, 1.

6 6

V H H


   (3.10) 

The second inequality of (3.10) comes from (3.4). Depending on the magnitude of the rupture 

velocity ,V we may have sub-shear cracking, if 

 sV c



 =  (3.11) 

or super-shear if 

 sV c  (3.12) 

We must emphasize that the hyperbolic conditions (3.10) do not imply necessarily super-shear 

rupture, as is the case for classical elastodynamics. Thus, Mach lines are expected even for sub-

shear conditions, as found in lattice dynamics [33,62]. Note, that the condition 
2 2 2 1(6 ) 1V H  − =  together with / 1sV c =  constitute boundaries of a sub-Rayleigh region. In 

flexoelectricity, mode III supports the development of Rayleigh anti-plane surface waves along 

the crack faces [47,57,58].  
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4. The out-of-plane displacement 

Under hyperbolic conditions eq. (3.6) can be solved with the method of the characteristic lines. 

Accordingly, the characteristic coordinates can be written as follows; 

 a
 

 =   (4.1.a) 

where: 

 
2 2

2 2
1

6 s

H V
a

c
= −  (4.1.b) 

 

Figure 1. The coordinate system of a crack-tip moving with the crack-tip constant rupture 

velocity V, the loading of the moving crack surfaces and the possible Mach lines that 

emanate from the crack-tip region. 3u  is the out of plane displacement field, 

3 3 /u V u =    is the velocity field, 3P  is the polarization field, 3E  is the electric field 

and ( , )B B   is the magnetic flux. The traction B.C. at 0 += and 0   are 

0 0

3 0( ) ( )t L   = − − −  and 3 ( ) 0r   . See also Appendix B for conditions at 0 =  

and L = . 
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Figure 2. The elliptic and hyperbolic regions that appear in a steady state dynamic anti-

plane flexoelectric problem (based on a similar figure from [47,57,58] and [60]. Note 

that for classic elastodynamics the hyperbolic region is also the super-shear region. 

Using eq. (4.1.a), we obtain 
3lnh u=  and eq. (3.2) leads to: 

 
( ) ( )

2
2 2 2 2

2 2 2 2
0

6 s s

h h H V V

c c

 

 

     
 + − =   

      

 (4.2) 

The general solution of eq. (4.2) can be found in [57]. Note that if / 6 1H =  eq (4.2) does 

not exist and therefore the problem will return to the classic one (absence of hyperbolic region). 

In what follows we assume that the faces of the crack ( 0 = ) are  loaded with a constant shear 

traction 3 0t = , close to the crack-tip in the region 0 L  and 3 0r =  for 0  , as shown in 

Figure 1 [63]. This loading follows the moving crack-tip and can be though of as a load due to 

an explosion that propagates with velocity V  [64]. Another way to apply such loading 

conditions is through irradiation with a focussed laser which induces expanding plasma inside 

the expanding crack, as in the case of KC  crystals [65,66]. Further more, [67] managed to 

apply wedge indentation loading on ice and observed crack tip velocities higher than the shear 

wave of ice. Supersonic cleavage of an elastic strip by a thin smooth rigid wedge was found to 

be also possible [68]. 
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If we consider the possibility of strain discontinuities, a solution of the hyperbolic differential 

equation (4.2) is [69]; 

 ( )3
L Lu u

u L
L L

  = − + −  (4.3.a) 

where ...  is the Macauley brackets of first order and:  

 0
L

L
u

a




=  (4.3.b) 

This solution implies a critical strain 0/ / ( )L cu L a  = = . Note, that [34] suggested a value 

of theoretical strain 0.24c = . The schematic of this approximation is shown in Figure 3. 

Planar wave fronts emanate from leading and trailing edges of the loading lines, as indicated 

in mode II dynamic rupture pulses (see for example [70]). At the crack tip ( 0) =  and at the 

end of the loading region ( ),L =  Mach lines are essential shock waves that will allow the 

crack-tip motion. The corresponding jump conditions are discussed in the Appendix A. The 

solution satisfies the energy conservation implying that the strain energy in the unfractured 

material is converted completely into kinetic energy as the crack propagates, as found for the 

classic elastodynamics by [71]. This means that the energy release rate is zero for this particular 

type of solution and thus, the fast crack propagation is dominated by the conversion of strain 

energy into kinetic energy, with the surface energy assumed to be rather small due to some 

prior weakness in the rupture direction. Additional consideration regarding the crack tip 

asymptotes when the strains are continuous will be given in the second part of this paper [72]. 
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Figure 3. The out of plane deformation in the hyperbolic case, as suggested by the 

approximation (4.3.a). 

The general form of the hyperbolic equation with respect to 3u  is: 

 ( ) ( )
4 4 4 2 2

1 2 3 1 2 34 2 2 4 2 2
2 , ,A A A B B u p   

     

      
+ + − + =  

       
 (4.4.a) 

 1 1 2 3 10, , 0, 0A A A A B     (4.4.b) 

If 1 0A  , then eq. (4.4.a) is elliptic and is equivalent to the equation of an orthotropic 

prestressed plate with zero Poisson’s ratio [73]. Between eq (4.4.a) and the orthotropic 
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prestressed plate with zero Poisson’s ration [74] it has been shown by [58] that the following 

analogies hold (see Table 2). In Table 2, [m]h  is the plate’s thickness, 1( , ) [Nm ]N N 

−  are 

the prestress line forces, 2( , ) [Nm ]E E 

−  are the elastic moduli and 1

0 [Nm ]Q −  is the line shear 

force  

Table 2. The analogies between the anti-plane couple elasticity problem and the 

prestressed orthotropic plate as introduced by [47,58]. 

 
 Anti-plane problem 

(Elliptic Case) 
Plate Problem 

 

 1 1

ogA A  
2 2 2

2 2
1

2 6 s

V H

c

 
− 

 
 

3

12

E h

N





 
 

 2 22 2 ogA A  
2 2 2

2 2
2

2 6 s

V H

c

 
− 

 
 

3

3

G h

N





 
 

 3 3

ogA A  
2

2
 

3

12

E h

N





 
 

 1 1

ogB B  
2

2
1

s

V

c
−  

N

N





 
 

 2 2

ogB B  1 1 
 

    
N

h


 

 

  0  
0Q

h
 

 

 

However, in the present case 1 0A   and the plate analogue found for the elliptic case must be 

modified. A decomposition of eq. (4.4.a) suggest that: 

 ( ) ( )
2 2 2 2 2 2

1 1 2 1 2 32 2 2 2 2 2
, ,A B B u p     

     

          
− − − + =     

          
 (4.5.a) 

 

2

2 2 1 3

1

1

0
A A A A

A


− + −
=   (4.5.b) 

 

2

2 2 1 3

2

1

0
A A A A

A


− − −
=   (4.5.c) 

Then, the analogue equation method decomposition [75] (see also [76]) can be used to split eq. 

(4.5.a) into two simultaneously operating partial differential equations according to: 
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 ( ) ( ) ( )
4 4 2

1 2 1 1 2 2 32 2 4 2
, , ,A A B u p b        

   

   
− + − = + 

    
 (4.6.a) 

 ( ) ( )
4 4 2

1 1 1 1 34 2 2 2
, ,A A B u b    

   

   
− + + = 

    
 (4.6.b) 

Equations (4.6.a), (4.6.b) suggests a two plate analogue, as summarized in Table 3. Both plate 

equations must be solved simultaneously with the same boundary conditions applied to both 

equations. Therefore, eqs (4.6.a), (4.6.b) can be modelled by a combination of two coupled 

plates, as will be shown in following section. Interior estimates regarding the continuity and 

finiteness of p , b , 3u  and their derivatives can be found in [77]. 

Table 3. The decomposition of the hyperbolic differential equation of the anti-plane 

flexoelectric problem into two parabolic analogue equations. 

The original Equation 

( ) ( )
4 4 4 2 2

1 2 3 1 2 34 2 2 4 2 2
2 , ,A A A B B u p   

     

      
+ + − + =  

       
 

The First Analogue Problem 

( ) ( ) ( ) ( )
4 4 2

2

2 2 1 3 3 2 32 2 4 2
, , ,A A A A A B u p b     

   

   
+ − + − = + 

    
 

The Second Analogue Problem 

( ) ( ) ( )
4 4 2

2

1 2 2 1 3 1 34 2 2 2
, ,A A A A A B u b   

   

   
− + − + − + = 

    
 

The First 

Analogue 

The Second 

Analogue 

1 0IA =  1 1

II ogA A= −  

2 2 2 2 1 32 I og og og og ogA A A A A A= + −  
2 2 2 2 1 32 II og og og og ogA A A A A A= − + −  

3 3

I ogA A=  3 0IIA =  

1 0IB =  1 1

II ogB B= −  

2 2

I ogB B=  2 0IIB =  
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Table 4. The analogue modified according to the decomposition proposed in Figure 4.  

Orig. 

Prob. 

Decomposed 

Problem 

Analogue 

Plate 

problem 

The FEM implementation 

The First Analogue (1st plate) 

1A  
1 0IA =  

3

12

I

I

E h

N





 0IE =  

22A  
2 2

2 2 1 3

2 I og

og og og og

A A

A A A A

=

+ −
 

3

3

I

I

G h

N





 

2 2 2

2 2 2

2
2 2 2 2

2 2 2 2

1 12
2

8 2 6

2 4 1
6 6

I

s

s s

V H
G

h c

V H V H

c c



   
= −  

   


    + − − −        

 

3A  
3 3

I ogA A=  

3

12

I

I

E h

N





 
2

2

12

2

IE
h




=  

1B  
1 0IB =  

I

I

N

N





 0IN =  

2B  
2 2

I ogB B=  1 
IN h =  

The Second Analogue (2nd plate) 

1A  
1 1-
II og

A A=  

3

12

II

II

E h

N





 
2 2 2

2 2 2

12
1

6 2

II

s

V H
E

c h


  
= − −  

  
 

22A  
2 2

2 2 1 3

2 II og

og og og og

A A

A A A A

= −

+ −
 

3

3

II

II

G h

N





 

2 2 2

2 2 2

2
2 2 2 2

2 2 2 2

1 12
2

8 2 6

2 4 1
6 6

II

s

s s

V H
G

h c

V H V H

c c



    
= − −   

   


    + − − −        

 

3A  
3 0II =  

3

12

II

II

E h

N





 0IIE =  

1B  
1 1

II ogB B= −  

II

II

N

N





 
2

2
1II

s

V
N h

c
 

 
= − − 

 
 

2B  
2 0IIB =  1 

IIN h =  
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5. The finite element method (FEM) 

The finite element model described in the previous section is shown schematically in Figure 4 

and was implemented in the ABAQUS [78] general purpose FEM code. The model consists of 

two identical plates whose nodes are connected by stiff vertical struts of height ,bh  so that both 

plates’ nodes share the same vertical displacement, corresponding to the anti-plane unknown 

field 3( , ).u   The two plates have the same boundary conditions, but different plate properties 

and different levels of prestresses, as summarized in Table 4. Essentially the two plates have 

lost their bending stiffness in each direction   and  , respectively. The refined finite element 

mesh used in our calculations consists of 80000 triangular plate elements evenly distributed in 

order to capture the localized increased displacement gradients suggested by the prior analysis 

(Figure 5.a). In this way, the modified problem (eq. (4.6.a) and eq. (4.6.b)) is solved with a 

more stable numerical methodology than the initial problem (eq. (4.5.a)). The loading region 

L was resolved with about 11 elements. In part II, for the asymptotic analysis, L was resolved 

with about 100 elements and / 2 with 15 elements. For the present analysis, the additional 

analogies are as follows: 

1. The out of plane shear loading (Figure 5) 

 
2

0
0 2

2

2 2b

Q L

h h
 =

+
 (5.1) 

2. The microstructural length 

 
32

2 12

E h






=  (5.2) 

3. The shear modulus 

 

IN

h


 =  (5.3) 

The results of the FEM calculations for four selected cases in the hyperbolic regime (depicted 

in Figure 2) are shown in Figure 6. Note the development of Mach cones as suggested by the 

theory, even for sub-shear rapture velocities.  

The asymptotic field near the crack-tip will be presented in the second part of this work.  
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Figure 4.  A schematic representation of the two-plate analogue configuration as 

introduced in ABAQUS. 

 

Figure 5. (a), The discretization of the FEM model. (b), The boundary conditions. The 

final model contains 40000 three-noded shell elements for each plate and 20301 beam 

elements to connect the two plates. 
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Figure 6. The out-of-plane displacement field as computed by FEM. Note the formulation 

of Mach Cones of slope less than the classic. 
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6. The out-of-plane polarization 

In order to calculate the out-of-plane polarization, we note that eq. (3.7) is an inhomogeneous 

modified Helmholtz equation. The particular solution comes from the out-of-plane 

displacement 3 ( )u   which is of the form (4.3.a). This indicates a partial solution for 
3 ( ),prtP 

which obeys the relation: 

 
2 2

3 3
3 2 2

prt
prt P u

P A B
 

 
− =

 
 (6.1.a) 

 
2 2

2 2
0.5

12 s

V H
A

c
=   (6.1.b) 

 
( ) ( )2 2

44 12 44 12

2 2 2

s

e f e fV V
B

a c a





− −
= =  (6.1.c) 

The complete solution of the polarization field can be constructed as superposition of the partial 

solution (prt) and a homogeneous solution (hmg) that modifies the solution in order to agree 

with the boundary condition [79] 

 ( ) ( ) ( )3 3 3, ,prt hmgP P P    = +  (6.2) 

The original boundary value problem (3.3) could satisfy the boundary condition; 

 ( )

0

max

3 0

max

, , 0
, 0

, , 0

P
P

P

  
 

  

 −    
= = 

− −    

 (6.3) 

where 
0

... is the Macauley brackets of zeroth order. This boundary condition (B.C.) implies 

that as the crack propagates, polarized material of limiting polarization maxP  remains on the 

crack surfaces [80]. Recently, Wang et al. [81] have observed huge polarization around 

stationary crack tips in 3SrTiO , using scanning transmission electron microscopy. In fact, they 

observed an average polarization of 
262μC/ cm  in three atomic unit cells adjacent to the crack-

tip. However, environment may change maxP  to a lower value. 

The normalized partial solution for polarization can be found by solving eq. (6.1.a) with the 

condition 3 0prtP =  and 3 / 0prtP   =  for 0   (ahead of the crack-tip); 

 
( )

( )

0 0

3

0

2

L L

A A A A

prt

L

L
e e e e

A A AP

Lu B

   
 



− −
+ − + −   

− + − + − −      
   =  (6.4) 
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Figure 7. The boundary condition associated with the out-of-plane polarization. The 

crack-tip is moving in the negative   with rapture velocity .V This boundary condition 

implies that as the crack propagates, it leaves on the crack surfaces polarized material 

of limiting polarization maxP  [80]. 

Accordingly, the homogeneous boundary value problem takes the form; 

 
2 22

3 3
3 2 2

0
2

hmg hmg
hmg P P

P
 

  
− + = 

  
 (6.5) 

with the following B.C.: 

 ( ) ( ) ( )
0

3 max 3, 0 ,hmg prtP P P g      = = − = = −     (6.6) 

The solution of the homogeneous boundary value problem can be represented using the Fokas 

method as [82–84]: 

 ( ) ( ) ( )3 , 2 ,hmg G
P t g t dt   





−


= −







 (6.7) 

 ( )
( )

( )
1 1

2 2

1
2 2

1
,

2 2 2

G
t K t

t


   

   

− −     
− = − +         − +  

 (6.8) 

where ( )1K   is the first-order modified Bessel function of second kind.  An asymptotic limit 

can be explicitly found for 
2 2( 2 / ) ( )s t = − + → , 1( ) / (2 ) sK s s e −

 which  gives 

3 ( , ) 0hmgP   → , as expected. 

The solution for some selected parameter combinations is shown in Figure 8. Note that the 

polarization amplitude concentrates close to the Mach lines. The extreme values of 3P  

(maximum and minimum) appear also on the Mach lines and are given due to the partial 

solution:  
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 ( )
( )3

1
0

2

L

A
prt LBu e

P
L



−

−
= = +  (6.9.a) 

 
( )3

1

2

L

A
prt LBuL e

P
L



−

− 
= = − 

 
 (6.9.b) 

Then, we can normalize those quantities, as follows: 

 
( )

( ) ( )

12
3 0

44 12

0, 1

6 2 1

L

prt AP L H A e

e f a L LA

 



−−
=    −

=   
− −  

 (6.10) 
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Figure 8. The normalized polarization 3 / ( / 2)LP u B  for different rapture velocities / sV c  

( max 0P  ). 
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Figure 9. The maximum polarization in respect to the constant A (different velocities), for 

selected values of the normalized loading region /L  (for 0B   we must take the 
3

prtP

value at /L = ). 

The normalized maximum polarization depends strongly on the parameter A  (see eqs. (6.1) 

and (6.9)) and is shown in Figure 9. For 0B  we also show the effect of the parameter A  in 

the Mach cone slope 
1sin ( / ( 6))sVH c −= .  
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7. The Steady State Electromagnetic Response 

The steady state magnetic response, i.e. the in-plane magnetic flux ( , )B    and ( , ),B    can 

be calculated from the polarization 3( , ),P    as suggested in [41], and particularized by [57]. 

The equations to be solved for the case of the steady state rapture take the form: 

1. Faraday’s Law 

 
3, , 0E V B  − =  (7.1.a) 

 
3, , 0E V B  − − =  (7.1.b) 

2. Ampere’s Law 

 
, , 0 0 3, 0 3, 0B B V E V P       − = − − =  (7.2) 

3. Gauss’ Law 

 
, , 0B B   + =  (7.3) 

3( , )E    is the steady state out of plane electric field 
-1 -1[A m s ]  and ( , ),H   ( , )H    are 

the steady state magnetic fields 
-2[A m ] . For elastic dielectrics 

0( , ) ( , ) /H B     =  and 

0( , ) ( , ) / ,H B     =  where 7 2

0 4 10 [kg mC ]  − −=  is the magnetic permeability of the 

vacuum and 1 9 2 -1 -2

0 (36 ) 10 C N m  − −=  is the dielectric constant of the vacuum.  

Assuming 
2 2 2

0 0 1,lightV c V  − =  we can utilize eq. (7.1.a), (7.1.b), (7.2) and (7.3) to obtain the 

approximate governing equations of the electromagnetic problem 

 ( )2 2

, 0 0 , 0 3, 0 3,1B V B V P B V P         − + =   +  (7.4.a) 

 ( )2 2

, 0 0 , 0 3, 0 3,1B V B V P B V P         − + = −   −  (7.4.b) 

Equations (7.4.a) and (7.4.b) are of Poisson type with 3P  being now a known function. The 

solution of (7.4.a) and (7.4.b) in the absence of far field boundary conditions is given as: 

 ( ) ( ) ( ) ( )
2 2

3,, , ln
4

V
H P d d          






−
−

      = − + −
 




  (7.5.a) 

 ( ) ( ) ( ) ( )
2 2

3,, , ln
4

V
H P d d          






−
−

      = − − + −
 




  (7.5.b) 
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The electrical field 3E  can be found using the known magnetic flux 
0( )B H = , assuming 

that there is no initial electric field (
30, 0B iff E = = ): 

 
3E V B= −  (7.6) 

H  and H  (as well as B  and B ) obtain their maximum values along the leading Mach line 

and are of the order of 
0 3 ( 0)prtV P  = . Note, that 3P   also obtains its maximum values along 

the leading Mach line (see Figure 9). On the other hand, the minimum values of H  and H  

are obtained along the secondary Mach line and are of the order of 
0 3 ( )prtV P L  = . 
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Figure 10. The normalized electromagnetic field (8 ) / ( )LH u BV   and 

( 8 ) / ( )LH u BV − , and the magnitude of the normalized electromagnetic field 

2 2 / [(8 ) / ( )]LH H u BV  +  for the material 3SrTiO ,  and also: 

1/ ( / 2) 4.24 10 ,Lu −= −  1

max / ( / 2) 1.49 10 ,LP u B −=  / 1.15,sV c =

2 2/ (6 ) 1.69,H =  1.12,a =  / ( / 2) 4.24L =  
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Figure 11. The time history of the Cauchy-like displacement, the polarization and the 

magnitude of the magnetic field for an observer located in a distance of 2.92 =  from 

the crack surface for the case described in Figure 10. Note that the electromagnetic 

response proceeds the displacement as the observer gets further from the crack surface.  

8. Conclusion 

The first part of this work examines the mode III hyperbolic steady state rupture regime in 

magneto-flexoelectric materials. It is shown that hyperbolicity does not necessarily imply the 

attainment of super-shear rupture speeds in such materials where strain gradients and local 

length scales are important. It is further shown that unlike classical elastodynamics in the 

absence process zones super-shear rupture is possible. As a consequence, radiation patterns 

featuring Mach lines appear at sub-shear as well as super-shear crack ruptures velocities. These 

Mach lines have been observed in lattice-type atomistic analyses and indicate the important 

effect of wave dispersion that is present in magneto-flexoelectrics. The analysis can be 

achieved hierarchically starting with the solution of the mechanical displacement field 3u  

which can be subsequently used to obtain the polarization field 3P . Moreover, the polarization 

field can be used to estimate the accompanying magnetic fields ,H H   and then to estimate 
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the electric field 3E . The Mach lines carry the stress, strain and velocity jumps, as well as, the 

polarization and the magnetic concentrations. The governing hyperbolic partial differential 

equations were separated into two partial differential equations resembling plate equations and 

were conveniently modeled as two connected prestressed plates. Accordingly, the problem was 

numerically solved with the use of a commercial finite element code. The computed radiation 

patterns and Mach lines were found to agree with the theoretical predictions. The analysis also 

quantified the electro-magnetic field that accompanies the acoustic shocking. 
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Appendix 

A. Shock Wave Analysis 

Assume that the motion of a body described in section 3 contains a surface discontinuity, 

moving with an intrinsic velocity 0U   in the normal n  to the surface direction. The linearity 

of the problem implies in our case a straight line in the plane ( , ).   Denote the jump 

(discontinuity) of a quantity f  across this surface as f f f− += −  where ,f f+ −
 are the 

values of f  immediately in front and immediately behind the surface. We assume in our case 

that 3 0,u = 3 0P = . From the kinematical condition of compatibility across the jump, we 

obtain (where ,( ) ( ) /n n =     is the directional derivative): 

 3 3, 3 3,andn nu U u P U P= − = −  (A.1) 

From the traction condition  

 ( )3 3, 44 12 3,n nt u e f P= + −  (A.2) 

we obtain with (A.1) that: 
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( )

2

44 12

3 3,

44 77

n

e f
t u

b b

 −

= − 
 +
 

 (A.3) 

Assuming that the intrinsic velocity of the shock is given as in the classic case from the 

momentum balance (see for example [85]) then: 

 
3 3t U u= −  (A.4) 

Combining eq. (A.4) with eq. (A.3), we have 

 
( )

2
2 44 12

44 77

e f
U

b b
 

−
= −

+
 (A.5) 

It is trivial to show (using eq. (3.4)) that; 

 
6

sU c
H

=  (A.6) 

which implies by the shock front slope sin ( 6 / ) ( / )sH c V = , that: 

 sin
U

V
 =  (A.7) 

Then the velocity behind the shock front is related to the traction behind the shock front as: 

 3
3

t
u

U
=  (A.8) 

The kinetic energy density behind the shock front is 2

3(1/ 2) .u Utilizing (A.8) and (A.3) we 

obtain;  

 
( )

2
2 3
3 3 3,2

44 12

44 77

1 1 1

2 2 2
n

t
u t u

e f

b b





= =
 −

− 
 +
 

 (A.9) 

where 3,nu  is the normal strain deformation behind the shock front. This last expression is the 

strain energy density. Therefore, on the crack face, the strain energy is transferred directly to 

the kinetic energy.  Acc
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B. Couple Stress Boundary Conditions 

At 0 =  and 0   couple stress boundary conditions must be applied of the form 

2 2 2

21 3 /u  =    and 2 2

22 3( ) / ( )u   − =    . The plate analogue model implies the 

in-plane bending moments as in Figure B.1. (at 0 =  and L = ) due to the strain and velocity 

jumps that are allowed along the crack face as indicated in Figure 3. Those moments are: 

 2 22 Lu
M a

L
 =  (B.1) 

 22 Lu
M a

L
 =  (B.2) 

 

Figure B.1. The Couple Stress boundary conditions in the form of concentrated moments 

used for the plate analogue. 
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