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Abstract 

The dispersion relations in flexoelectricity are examined for plane time-harmonic waves that 

propagate in the flexoelectric materials. In contrast to classic elastodynamics, dispersion is observed 

in the displacement field due to two micro-structural and two micro-inertial lengths that emerge from 

the electromechanical coupling. In the absence of such coupling we return to the classic 

elastodynamic results. The problem dissociates in longitudinal and transverse waves, as is the case in 

classic elastodynamics. The group velocity of the mechanical field is also the velocity of the energy 

transfer across the planes of the waves. An optical branch of the dispersion relation appears due to 

the polarization field that follows the mechanical field. The longitudinal and transverse velocities of 

the plane waves was found to depend on the corresponding microstructural lengths and are less than 

or equal to the classic plane wave velocities because the micro-inertial lengths are greater than or 

equal to the micro-structural length. The opposite effect is expected when we encounter flexoelectric 

metamaterials in which case the micro-inertial lengths are less than the micro-structural length. 
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1. Introduction 

Flexoelectricity is the ability of materials to convert mechanical strain gradients to electric 

polarization and vice versa. However, an electric field that changes with time gives rise to a magnetic 

field that has to be accounted for. Many rocks that consist earth’s mantle exhibit flexoelectricity, 

often combined with piezoelectricity (in case of anisotropy). An excellent recent perspective of this 

unusual electromechanical coupling with emphasis on applications in energy harvesting, micro-

electro-mechanical systems, nanotechnology and biology can be found in Krichen and Sharma 
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(2016) as well as other review articles like Tagantsev (1991), Yudin and Tagantsev (2013), Zubko 

et al. (2013), Wang et al (2019) to mention but few.  

 

Flexoelectricity is considered to be the only source of strain gradient effects, and the coupling of the 

mechanical problem is analogous to a problem of couple stress elasticity where the two characteristic 

types of lengths emerge as a combination of mechanical, dielectric and flexoelectric constants, 

Giannakopoulos and Rozakis (2020). The first type of length resembles the (well known in the 

context of couple stress elasticity) microstructural length which is connected to the displacement 

curvature (see also the anti-plane problem in static form by Gavardinas et al, 2018 and in dynamic 

form by Giannakopoulos and Zisis, 2019). The second type of length is less referenced (and hardly 

considered in metrology) and resembles the microinertial length that essentially introduces a non-

classic kinetic energy term that connects to the micro-rotations of the matter. As will be shown, these 

micro-lengths create dispersion of plane waves, in contrast with classic elasto-dynamics that predict 

no such dispersion. Therefore, these dispersion relations are fundamentally different than the 

geometrically related dispersion encountered in wave guides such as circular cylinder, plates etc that 

show dispersion in the context of classical elastodynamics (see for example Achenbach (1990), 

Bleustein and Stanley (1970), Mindlin and McNiven (1960), Pochhammer (1886)). Recently, 

dispersion analyses of flexoelectric wave guides have been conducted for extension of rods, Qu et al 

(2021a), and for torsion of rectangular rods, Qu et al (2021b).  

 

The paper is structured as follows. Section 2 provides the basic mechanical and electromagnetic field 

equations and corresponding boundary conditions. Section 3 performs the dispersion analysis for the 

mechanical and the optical cases separately, giving the corresponding dispersion relations between 

the frequency and the wave numbers. The phase velocities and the group velocities are found in 

closed forms. The group velocities are shown to be energy transport velocities in the Appendix. 

Section 4 gives the wave numbers as functions of the frequency. The analysis shows that two of the 

four wavenumbers of the dispersion analysis are imaginary. Section 5 provides the comparison with 

available experimental results. Section 5 gives the analysis of plane waves in an infinite flexoelectric 

body. Section 7 gives a brief account of flexoelectric metamaterials and the analogy with 

viscoelasticity. Finally, Section 8 concludes with basic findings of the work. 

 

2. Flexoelectricity: The mechanical and the electromagnetic fields 
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We examine a homogeneous linear flexoelectric solid (being dielectric at the same time) with an 

energy density due to elastic deformation and electric polarization which depends on the strain 

gradients. Reverse flexoelectricity implies that the gradient of the polarization produces strain and 

should be included in the energy density. The elastic strain energy due to strain gradient effects will 

not be considered and the kinetic strain energy will not include micro-rotational effects.  

 

In what follows, consider the flexo-electric problem with key unknowns the displacement vector [m], 

the polarization vector [C/m2] and the electric field vector [N/C]. These are functions of the Cartesian 

coordinates xi, and the time t. To clarify the new statement of the problem, we will follow the 

approach of Giannakopoulos and Rosakis (2020) and decouple the problem to one that involves 

only the displacement vector (dynamic equation) and another that involves the polarization vector in 

relation to the displacement (transfer equation).  

In what follows, consider the flexo-electric problem with key unknowns the material displacement 
vector iu  [m], the material (electric) polarization vector iP  [C/m2] and the electric field iE  [Nm/C]. 
These are functions of the (right-handed) Cartesian coordinates x1, x2, x3 and the time t. The linear 
internal energy density function that includes deformation and polarization is (Mindlin, 1968; 
Maraganti et al, 2006; Hu et al, 2017): 

, , ,

0
, ,

1 1 1
2 2 2ij i j ijkl j i l k ijkl ij kl ijkl j i kl

ijkl i kl j ij j i

a PP b P P c e P
W

f P b P

ε ε ε

ε

 + + + =  
+ +  

                                              (2.1) 

The mechanical linear strain is related to the displacement vector as , ,( ) / 2ij i j j iu uε = + . ,i jP  is the 

gradient of the polarization vector iP  and ,ij kε  are the gradients of the strains. Repeated indices 

imply summation from 1 to 3 and ( ),
/ ii

x= ∂ ∂ . The dielectric body will be assumed to be a perfect 

insulator, so the gradient of the polarization vector is minus the bounded charge inside the body, 

boundP ρ∇⋅ = −


[C/m3]. The compatibility equations are identical to classic linear elasticity. The form 
of the energy density function (2.1) omits an extra term that ensures thermodynamic stability of the 
total energy (1/2gijklmn ui,jk ul,mn). This term represents the contribution of purely elastic nonlocal 
effects. This energy addition may stabilize the problems in case that the microstructural lengths 

,p s  defined below in eqs. (2.30) and (2.31) are not real and positive, something that has not been 

experimentally observed so far. 

It has been found however (see Maraganti et al (2006), erratum) that, for most problems, 
excluding this contribution is generally small, although, if flexoelectricity is incorporated, it is 
required to guarantee thermodynamic stability. For some problems, this omission (or inclusion) of 
this term may be important especially where stability is an issue. 
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The material constants are: the elastic constant tensor ijklc  [N/m2], the flexo-electric coefficient tensor 

ijklf  [Nm/C], the reciprocal dielectric susceptibility tensor ija  [Nm2/C2], the inverse flexo-electric 

coefficient tensor ijkle  [Nm/C] and the gradient polarization coupling tensor ijklb  [Nm4/C2]. The 

symmetries of the above constants have been addressed in Shu et al (2011). All these material 
tensors should be positive definite. The constants 0

ijb  are related to the surface energy per unit area 
0( ) / 2s i ij jT n b P=  with in  being the unit normal vector pointing outside the flexoelectric body 

(Mindlin, 1968) and do not affect the balance laws, but only the boundary conditions. 

In the works on continuum flexoelectricity so far, the Maxwell electric self-field iE  was stated by an 

electric potential as ,i iE = −Φ  [ /N C ]. In this work, and in anticipation of the interaction with the 

magnetic field, we leave the electric field to be general. The total electric enthalpy is (Toupin, 
1956): 

0
1
2 i i i iH W E E E Pε= − −          (2.2) 

where, 12 2 1 2 1
0 8.854 10 [ Fm ]C N mε − − − −≈ × =  is the dielectric permittivity of vacuum (assumed to 

surround the body).  

The kinetic energy density is: 

3 3
1
2

T u uρ=              (2.3) 

where ρ  is the material mass density and /i iu u t= ∂ ∂  is the material velocity vector. If 0ρ = , the 
problem reduces to the static case. 

Accordingly, the constitutive equations are written as:  

a. Cauchy (symmetric) stress tensor: 

,ij ijkl kl klij l k
ij

W c e Pσ ε
ε
∂

= = +
∂

          (2.4) 

b. Dipolar stress tensor: 

,
ijk lijk l

jk i

W f Pτ
ε
∂

= =
∂

               (2.5) 

c. Effective local electric force: 

( ),k kj j klij ij l
k

WE a P f
P

ε∂
= − = − +

∂
               (2.6) 

d. Polarization gradient force: 
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0
,

,
ij ijkl l k ijkl kl ij

j i

WE b P e b
P

ε∂
= = + +
∂

        (2.7) 

We will concentrate in the isotropic response and in this case the material tensors become 

ij ija aδ=              (2.8) 

12 44 ( )ijkl ij kl ik jl jk ilc c cδ δ δ δ δ δ= + +           (2.9) 

12 44 ( )ijkl ij kl ik jl jk ilf f fδ δ δ δ δ δ= + +           (2.10) 

12 44 ( )ijkl ij kl ik jl jk ile e eδ δ δ δ δ δ= + +           (2.11) 

12 44 77( ) ( )ijkl ij kl ik jl jk il ik jl jk ilb b b bδ δ δ δ δ δ δ δ δ δ= + + + −        (2.12) 

0
0ij ijb b δ=              (2.13) 

where ijδ  is Kronecker’s delta (identity tensor). All material constants are positive definite and 

bounded. The dielectric susceptibility χ relates to the dielectric constant of vacuum 0ε  as 01/ a χε= . 

The classic elastic dielectric case is obtained, if 0ijklf =  and 0ijkle = , whereas the classic elastic case 

requires additionally 0ija =  and 0 0ijb = . If only 0ijklf = , we recover the formulation of Mindlin 

(1968; 1969) for a dielectric solid with polarization gradient.  

Using Hamilton’s principle (least action), that is minimization of the total electric enthalpy with 
respect to iu  and iP  in the whole body volume V and arbitrary time interval ( 10, t ), 

2

0
( ) 0

t

V
H T dVdtδ − =∫ ∫          (2.14) 

we obtain the Euler conditions for all the material points of the body (in the presence of body forces 

iX  [N/m3] and initial electric field 0
iE  [N/C]): 

a. Conservation of linear momentum: 

, ,ji j kji jk i iX uσ τ ρ− + =           (2.15) 

b. Conservation of electric field: 

0
, 0j ij i j jE E E E+ + + =          (2.16) 

Note that in right hand side of eq. (2.16) the polarization inertia 0d P
  is considered to be negligible. 

c. Gauss’ law (absence of free charges) inside the body: 
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, 0 , , 0i i i i i iD E Pε= + =            (2.17) 

where 0i i iD E Pε= +  is the electric displacement. 

d. Maxwell-Faraday equations outside the body (in absence of magnetic flux): 

0E∇× =


            (2.18) 

where ∇ is the gradient operator,or, using the alternating Levi-Civita tensor, , 0ijk k jEε =  . The 

corresponding, work conjugate, boundary conditions are summarized in Table 1. The electric 
boundary conditions can be materialized with appropriate steady state currents applied by surface 
conductors, Jackson (1975). In the present approach, the Maxwell electromagnetic 
stresses (D E ) / 2j i k k ijD E δ−  are considered much smaller than the mechanical stresses ijσ . For a 

thorough discussion of the influence of Maxwell and electrostatic stresses in flexoelectricity refer to 
Hu and Shen (2010). 

Table 1: Mutually exclusive boundary conditions for the flexoelectric problem. 

Mutually Exclusive Boundary Conditions 

Essential Boundary Conditions Dynamic Boundary Conditions 

iP  j jin E  

Φ  ( )0i i i sn E Pε σ− =  

iDu  i kji k jr n nτ=  

iu  , ( ) ( )i ij j kji k j l l j k kji j kji kt n n D n n n D nσ τ τ τ= − + −  
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in is the unit normal vector pointing outside the body 

/k kD n x≡ ∂ ∂  is the normal to the surface derivative 

( ) /j jk j k kD n n xδ≡ − ∂ ∂  is the tangential to the surface derivative 

( ) ( )+ −= −  is the jump from outside of the body (+) to the inside of the body (-)  

sσ is the surface charge imposed on the dielectric boundary 

 

The initial conditions are 

0

0

0

( ,0) ( )

( ,0) ( )

( ,0) ( )

i i

i i

i i

u x u x

u x u x

P x P x

=

=

=

 

 
 

 

           (2.19) 

where 0
iu  is the initial displacement vector, 0

iu is the initial velocity vector and 0
iP is the initial 

polarization vector. The initial fields are considered to be known and are often taken to be zero. 

Furthermore, assuming zero body forces and initial electric field ( 3 00[N/ m ], 0[N/ C]i iX E= = ), we 
transform Eqs. (2.15) and (2.16) into Navier-type of equations: 

2 2
44 12 44 44 12 12 44 44( ) ( ) ( ) ( 2 ) ( )i i k k i i k k ic u c c u e f P e e f P uρ∇ + + ∇ ∇ + − ∇ + + − ∇ ∇ =     (2.20) 

2 2
44 12 12 44 44 44 77 12 44 77( ) ( 2 ) ( ) ( ) ( ) ( )

0
i i k k i i k k

i i

e f u d d f u b b P b b b P
aP E
− ∇ + + − ∇ ∇ + + ∇ + + − ∇ ∇

− + =
  (2.21) 

where, 2 2 2 2 2 2 2
1 2 3/ / /k k x x x∇ =∇ ∇ = ∂ ∂ + ∂ ∂ + ∂ ∂  is the Laplacian operator, 4 2 2∇ =∇ ∇  is the 

biharmonic operator. Note that, if 0ijklf = , 0ijkle =  and 0ija = , we obtain from (2.20) the classic 

elastodynamic equations and (2.21) is identically zero. 

Starting from the Navier-type of equations (2.21), we take the gradient on (2.21) and on (2.17) and 
eliminate the electric field to obtain: 

 
2 2

44 12 12 44 44

2 2 1 2
44 77 12 44 77 0

( ) ( 2 )

( ) ( ) ( ) 0

e f u e e f u

b b P b b b P a Pε −

− ∇ ⋅∇ + + − ∇ ∇⋅

+ + ∇ ⋅∇ + + − ∇ ∇⋅ − + ∇ ∇⋅ =

 

       (2.22) 

Thus the reformulation of the problem leads to solving two coupled equations (2.20) and (2.22) with 
respect to the displacement vector iu  and the polarization vector iP .  
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The representation of the general solution of (2.20), (2.22) has been given by Giannakopoulos and 
Rosakis (2020) as a Helmholtz decomposition of both the displacement and the polarization vectors 
as 

*u Hφ= ∇ +∇×
   * 0H∇⋅ =


        (2.23) 

*P χ= ∇ +∇×Κ
 

  0K∇⋅ =


        (2.24) 

where ( , )x tφ   and *( , )x tχ   are scalar functions, whereas *( , )H x t
  and ( , )K x t

  are vector functions that 
are solutions of 

  ( )2 2 4 2 2
2

1
p p

p

h
c

φ φ φ φ∇ − ∇ = − ∇           (2.25) 

( )2 * 2 4 * * 2 2 *
2

1
s s

s

H H H h H
c

∇ − ∇ = − ∇
    

         (2.26) 

2 * 2 4 * 211 11
2 1

0

1
p

p

e f
c a

χ χ φ
ε −

 −
∇ − ∇ = ∇ + 

         (2.27) 

2 2 4 2 *44 12
2

1
s

s

e fK K H
c a

− ∇ − ∇ = ∇ 
 

  
          (2.28) 

where the characteristic dilatation and shear speeds appear as in the classic elastodynamics 

11 12 44

44

2 2 (1 )
(1 )(1 2 )

2 (1 )

p

s p

c c c Ec

c Ec c

λ µ ν
ρ ρ ρ ρ ν ν

µ
ρ ρ ρ ν

+ + −
= = = =

+ −

= = = <
+

     (2.29) 

where E , and ν  are the Young’s modulus and the Poisson’s ratio respectively, and ( , )λ µ are the 
classic Lame constants. Moreover, in the above equations four lengths appear, defined by 

( ){ }

( )

( )

2
12 44 44 44 77 44 77 44

2
44 122 44 77

44 772 2

, , , , , , 0

0

0

s

s s

a f f e b b b b e

e fb b
a a

b b
h

a

µ µ

µ

+ + − >

−+
= − ≥

+
= ≥ ≥





      (2.30) 
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{ }

( )

2
11 12 44 11 12 44 11 12 44 44 11 11

2
11 112 11

1 1
0 0

2 211
1

0

2 , , 2 , 2 , , ( 2 ) 0

0
( 2 )( )

0

p

p p

b b b a f f f e e e f b e

e fb
a a

bh
a

λ µ

ε λ µ ε

ε

− −

−

= + = + = + + − >

−
= − ≥

+ + +

= ≥ ≥
+





     (2.31)                                  

Thus, we obtain two “micro-structural” related lengths ( ,p s  ) and two “micro-inertial” related 

lengths ( ,p sh h ). Note that the positive ness of the lengths stems from the assumed convexity of the 

energy density. Gradient dielectricity also yields the internal lengths ( ,p s  ) and ( ,p sh h ) while, 

flexo-electricity leads to higher microstructural lengths, compared to gradient dielectricity.  The 
mechanical response is similar to the Mindlin’s model of linear elastic solids with microstructure 
(Mindlin, 1963). We further note that polarization exhibits a size effect similar to the size effect of 
the mechanical displacement. The body forces and the initial electric fields may be easily 
incorporated in eqs. (2.25-2.28) provided we can represent these fields as the displacement and 
polarization field in eqs. (2.23) and (2.24).   

Typical material constants for PMMA (poly-methyl-methacrtylate) were estimated and are shown in 
Table 2 and are obtained from Giannakopoulos and Rozakis (2020). A rather complete material 
data for alkali halides have been found by Askar et al (1970) and are also summarized in Table 2.  

 

Table 2: Typical material constants. 

Constant Units 

 

NaI 

 

 

KI 

 

 

NaCl 

 

 

KCl 

 

PMMA 

44cµ =  GPa 7.2 4.4 12.8 6.8 2.215 

12 442 2c cλ µ+ = +
 

GPa 21.4 12.7 38.4 19.9 9.585 

/e44-f12 / Nm/C=V 
-2.10 

 

-1.94 

 

-2.42 -2.15 
7.015 

/ e11-f11 / Nm/C=V 3.81 3.42 4.67 3.92 56.12 
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b11 Nm4/C2 0.712 10-9 1.110 10-9 0.688 10-9 1.20 10-9 1.807  10-6 

44 77( )b b+  

 

Nm4/C2 0.712 10-9 1.110 10-9 0.688 10-9 1.20 10-9 
1.807  10-6 

a Nm2/C2 137 108 176 108 174 108 243 108 6.275  1010 

ρ kg/m3 3670 3120 2160 1980 1180 

cs m/s 1401 1188 2434 1853 1370 

cp m/s 2415 1994 4216 3170 2850 

p  nm 0.00179 0.00821 0.0664 0.01887 2.9 

ph
 

nm 0.07498 0.09221 0.07265 0.09351 3.2075 

s  nm 0.0166 0.0306 0.0376 0.0549 4.521 

sh  nm 0.2280 0.2511 0.1988 0.2222 4.535 

0a   

Atomic radius 
nm 

0.323 0.353 0.281 0.314 
 

pΩ  THz 33 26 50 40  

sΩ  THz 22 19 31 27  

- 0b  Nm/C 1.26 10-2 1.15 10-2 1.44 10-2 1.29 10-2  

ε0 = 1/(36π ) × 10−9 ≈ 8.854 × 10−12 C2 N−1 m−2 dielectric constant at vacuum 
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The general solution starts from the mechanical response, solving (2.25) for ( , )x tφ  , and (2.26) 

for *( , )H x t
  . Once the displacement vector is found, the polarization vector can be found from the 

solution of (2.27) for *( , )x tχ   and (2.28) for ( , )K x t
  .  

 

3. The dispersion relations 

The discrete atomic structure of crystals implies a dispersive medium, even in the absence of the 

flexoelectric effect (Brillouin, 1946). In the present case, the relation between the frequency / 2ω π  

and the wave number k  can be obtained from the dynamic equilibrium equations (2.25) for the 

dilatational waves, and (2.26) for the shear waves. Due to conservation of energy assumed in the 

present model, the frequency is real, whereas the wave number may be complex. The dynamic 

equation will provide two dispersion relations, as has been indicated by Gouriotis and Georgiadis 

(2015) for the Toupin-Mindlin gradient theory (with one micro-inertial length).  

Assuming a solution of the type exp[ ]exp[ ( )]i t ik n xφ φ ω= − ⋅
  , where n  is the in-plane unit direction 

vector of travelling waves and 1i = − , and replacing this type of solution in (2.25), we obtain a 

dispersion relation for the dilatation mechanical wave as: 

2 2
2 2 2

2 2

1
1

p
p

p

k
k c

h k
ω

+
=

+


          (3.1) 

and the phase velocity reads as: 

1/22 2

2 2

1
1

p
p p

p p

k
c c

k h k
ω  +  = ≤    +   


         (3.2) 

The dilatational energy propagates with group velocity /d dkω  which reads as: 

( )( ) ( )1/2 3/22 2 2 2 2 2 2 2

32 2

2 2 2

1 1

1 1
1

p p p p p
p p

p

p p pp p

d c k h k k h k
dk k

k
k k h k c k

ω ω

ω ω ω

− −   = + − + + =   
   

+     = ≤     +     

 


    (3.3) 

So the group velocity is less than the phase velocity, because 2 2
p ph ≥  , and varies smoothly between 

the values: 
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0, p
p p

dk c
dk k
ω ω   → = =   

   
         (3.4) 

2

2, p
p p

p p

dk c c
dk h
ω →∞ = ≤ 

 


        (3.5) 

Note that for p ph =   or ( , ) 0p ph → , the dilatational wave velocity degenerates into the non-

dispersive velocity of classical elastodynamics. Assuming now a solution of the 

type * * exp[ ]exp[ ( )]H H i t ik n xω= − ⋅
   , where n  is the in-plane unit direction vector of travelling 

waves, and replacing this type of solution in (2.26), we obtain a dispersion relation for the shear 

mechanical wave as: 

2 2
2 2 2

2 2

1
1

s
s

s

kk c
h k

ω +
=

+
           (3.6) 

and the phase velocity reads as: 

1/22 2

2 2

1
1

s
s

s s

kc
k h k
ω  +  =    +   

          (3.7) 

The dilatational energy propagates with group velocity which reads as: 

( )( ) ( )1/2 3/22 2 2 2 2 2 2 2

32 2

2 2 2

1 1

1 1
1

s s s s s
s s

s

s p ss p

d c k h k k h k
dk k

k
k k h k c k

ω ω

ω ω ω

− −   = + − + + =   
   

+     = ≤     +     

 


    (3.8) 

Note that for s sh =   or ( , ) 0s sh → , the shear wave velocity degenerates into the non-dispersive 

velocity of classical elastodynamics. As for the dilatational waves, the group velocity for the shear 

waves is less than their phase velocity and varies smoothly between the values: 

0, s
s s

dk c
dk k
ω ω   → = =   

   
         (3.9) 

2

2, s
s s

s s

dk c c
dk h
ω →∞ = ≤ 

 

          (3.10) 
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Dispersion is due to the ratio of the micro-structural to the micro-inertial lengths. If these ratios are 

one, we return to the classic non-dispersive case. Our analysis predicts that the micro-inertia lengths 

have an important effect at high frequencies with wave lengths that are comparable with the micro-

structural length. Comparing the phase velocities, we observe that 

2

44 77

11

p

p s p ss

c b b d dand
c b k k dk dk

ω ω ω ω  +        ≥ ⇔ ≥ ≥         
        

    (3.11) 

Indeed, the known material parameters indicated that the ratio ( )44 77 11/b b b+ is never larger than 2 

and 2 2/p sc c is not smaller than 2 (see for example Table 2). Nevertheless, condition (3.11) does not 

stem from any theory and should not be taken for granted for all natural and synthetic dielectric 

materials. Condition (3.11) is also necessary and sufficient for a similar inequality for the group 

velocity. 

Assuming exp[ ]exp[ (n x)]i t ikφ φ ω= − ⋅
   and * exp[ ]exp[ (n x)]pS i t ikχ φ ω= − ⋅

  , the transfer equation 

(2.27) provides a “dispersion-like” relation which we will accept as a soft-mode optical dispersion 

related to the dilatational mechanical waves 

( )1
02 2 2 2

11 11

1p p p

a
c S k

e f
ε

ω
−− +

 = + −
           (3.12) 

For real frequencies, we must have ( )1
0 11 11/ ( ) 0pa S e fε −− + − >  and the two fields must be in phase. 

Interestingly, Huller (1969), using lattice dynamics and the quantum result of Barrett (1952) 

provides a soft-mode optical dispersion relation for perovskites of the type: 

2 2 2
p pkω ≈ Ω +Λ           (3.13) 

In (3.13), pΩ is a frequency at zero wave number (cut-off frequency) that is inversely proportional to 

the dielectric constant (or proportional to a  in our presentation). The dielectric constant depends 

critically on the temperature, Barrett (1952). Comparing (3.12) and (3.13) we can identify Huller’s 

parameters as 

( )1
02 2

11 11
p p p

a
S c

e f
ε −− +

Ω =
−

          (3.14) 
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2 2
p p pΛ = Ω             (3.15) 

Next, assuming * * exp[ ]exp[ (n x)]H H i t ikω= − ⋅
     and K exp[ ]exp[ (n x)]sK S i t ikω= − ⋅

    , the transfer 

equation (2.28) provides a “dispersion-like” relation which we will accept as a soft-mode optical 

dispersion related to the shear mechanical waves 

2 2 2 2

44 44

1s s s
ac S k

e f
ω −  = + −

                (3.16) 

For real frequencies, we must have 44 12/ ( ) 0saS e f− − >  and the two field must be in-phase. 

Following Huller (1969), the soft-mode optical dispersion relation related to shear type of 

mechanical waves is of the form: 

2 2 2
s skω ≈ Ω +Λ           (3.17) 

In (3.17), sΩ is a frequency at zero wave number that is inversely proportional to the dielectric 

constant (or proportional to a  in our presentation). The dielectric constant depends critically on the 

temperature, Barrett (1952). Comparing (3.16) and (3.17) we can identify Huller’s parameters as 

2 2

44 44
s s s

a S c
e f
−

Ω =
−

          (3.18) 

2 2
s s sΛ = Ω             (3.19) 

Values of ,p sΩ Ω  can be found in several books, e.g. Kittel (1971). 

It is interesting to note that in case , 0p s ≈  (semiconductors), the above dispersion relations take the 

general form (disregard indices p and s for shortness) 

2 2 2
2 2

1
1

k c
h k

ω =
+

          (3.20) 

for the mechanical response and 

2 2ω ≈ Ω            (3.21) 

for the optical branch of the dispersion relation. 
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Figure 1a shows the normalized plot of the mechanical modes, implied by eqs. (3.1) and (3.6). 

Figure 1b shows the normalized plot of the optical modes, implied by eqs. (3.12) and (3.14). The 

normalized wave number is ,k kh p s= . The suffix p,s denotes dilatational and shear part accordingly. 

The normalized frequency for the mechanical modes is , ,/p s p sh cω ω= . The normalized frequency 

for the optical modes is ,/ p sω ω= Ω . 

The normalized dispersion equations take the form 

1/22 2
, ,

2

1 ( / )
1
p s p sh k

k
k

ω
 +

=   + 


             (3.22) 

for the mechanical modes and  

1/22 2
, ,1 ( / )p s p sh kω  = +                 (3.23) 

for the optical modes. Figure 2a shows the normalized mechanical phase velocities / kω , as a 

function of the normalized wave number k . Then, from (3.2) and (3.7), we obtain: 

1/22 2
, ,

2

1 ( / )
1
p s p sh k

k k
ω  +
=  + 


         (3.24) 

Figure 2b shows the normalized optical phase velocity / kω  , as a function of the normalized wave 

number k . Then, from (3.23), we obtain: 

1/22 2
, ,

1 1 ( / )p s p sh k
k k
ω  = +                 (3.25) 

Figure 3a shows the normalized mechanical group velocities / dkdω  , as a function of the 

normalized wave number k . Then, from (3.3) and (3.8), we obtain: 

( )( ) ( )( ) ( )
1/2 3/22 22 2 2 2

, , , ,/ 1 / 1p s p s p s p s
d h k k h k k
dk k
ω ω − −
= + − + +      (3.26) 

In the Appendix we show that the mechanical group velocities (3.26) are the velocities of the 

transfer of the time average of the power per unit area to the twice the time average of the kinetic 
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energy across the plane of a time-harmonic plane wave (longitudinal and transverse) that travel 

inside the body. 

Figure 3b shows the normalized optical group velocities /d dkω  , as a function of the normalized 

wave number k . Then, from (3.23), we obtain: 

( ) ( )( ) 1/22 2 2
, , , ,/ 1 /p s p s p s p s

d h k h k
dk
ω −

= +         (3.27) 

In these figures, there is a free parameter in the range , ,0 / 1p s p sh≤ ≤ . As this parameter increases 

from 0 to 1, the mechanical dispersion relations start with the same slope at low frequencies and 

attain a linear asymptote at high frequencies, proportional to , ,/p s p sh . The optical dispersion 

relationships start at a high initial frequency and also attain a linear asymptote at high frequencies, 

proportional to , ,/p s p sh . Note that the optical frequencies are greater than the mechanical 

frequencies. The normalized phase and group velocities approach the value , ,/p s p sh  at high wave 

numbers k →∞ . The phase velocities are greater than the group velocities. The mechanical phase 

velocity, the mechanical group velocity and the optical group velocities have an upper bound of 1. 

The optical phase velocities are unbounded for small wave numbers 0k → . Note that the dilatation 

group velocity is greater than the shear group velocity for both the mechanical and the optical modes. 

The derived dispersion relation (3.20) can be also related to the bond charge model of Weber (1974) 

that includes metal-like binding bonding by central forces between nearest-neighbor ions and 

covalent binding in interactions involving the bond actions, observed in many semiconducting 

material.  

2 2
2 20 0

' 2
0

sin ( / 2)
4 1 2( / )sin ( / 2)

a kac
f f ka

ω =
+

        (3.28) 

where 0a  is the atomic cell dimension, and ' /f f  is the ratio of the ionic forces to the bond charge 

forces. The result holds for the Brillouin zone 00 / 2 / 2ka π≤ ≤ . For wave numbers less than 01/ a , 

the ratio of the internal lengths of the present theory indicates that the micro-structural length relates 

to the atomic cell dimension 0 / 2a =  . The ratio of the ionic forces to the bond charge 

forces '( / 1)f f >>  can give an estimate of the ratio of the micro-inertial length to the micro-inertial 

length,  
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1/2
0 1 2

2
a fh

f
′ 

= + 
 

                        (3.29) 

The dispersion relations provide a good approximation to many experimental dispersion curves of 

flexoelectic materials. The comparisons include the dispersion of the transverse acoustic and soft 

optical results for KTaO3 (potassium tantalite) found in the work of Axe et al. (1970), for PbTiO3 

(lead titanate) by Shirane et al. (1970) and for BaTiO3 (barium titanate) by Harada et al. (1970) 

and others. Examples of the above dispersion relations have been shown to fit well with experimental 

results for the shear type of waves, Giannakopoulos and Zisis (2021). 

It is of interest to point that the dispersion relation of the type (3.22) approximates the dispersion of 

the fundamental mode of a circular cylinder of radius R acting as a wave guide of longitudinal 

waves, Achenbach (1990). In this case, an analogy can be established by assuming a micro-stuctural 

length and a micro-inertia length as 

 

( )

2

2

2

2

0.862 1.14 2 1 1
1

R

h

ν

ν ν
ν

→

+
→ + >

+





        (3.30) 

with a characteristic wave velocity 

Ec
ρ

→            (3.31) 

Another interesting analogy of the optical dispersion relation of the type (3.23) exist with the classic 

waveguides is the horizontally polarized shear waves propagating in an elastic layer of thickness 2H 

and is the first antisymmetric mode (n=1), Achenbach (1990). In this case, an analogy can be 

established by assuming a micro-stuctural length as 

2

2

2

2

0

H

h

π
→

→





           (3.32) 
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with a characteristic wave velocity 

2(1 )s
Ec
ν ρ

=
+

          (3.33) 

and a cut-off frequency 

2
s

s
c
H

π
Ω →            (3.34) 

 

4. Attenuation 

Regarding the mechanical waves, solving (3.2) and (3.6) to express the wave number k as a function 

of the frequency ( )k ω , we obtain: 

( )

2
2

1 22 2 2 2 2 2 2 2 2

2( ) 0
4

k
c h c h c

ωω
ω ω ω

= ≥
− + − + 

      (4.1) 

and 

( )

2
2
2 22 2 2 2 2 2 2 2 2

2( ) 0
4

k
c h c h c

ωω
ω ω ω

= <
− − − + 

     (4.2) 

In the above results we have{ }, 0,p p pc c h h= = ≠ =   for the dilatational waves 

and{ }, 0,s s sc c h h= = ≠ =   for the transverse waves. These results imply that the 1k ’s are 

always real and the 2k ’s are always imaginary and 1 2 11/ 1/ ,h k k k< < > . The imaginary wave 

numbers imply attenuated or evanescent waves (with zero cut-off frequency) that do not exist in 

classical elasto-dynamics{ }2 2 2
10, 0, /h k cω= = = . This indicates that, depending on the initial 

and boundary conditions will lead to spatial attenuation of the mechanical waves due to the radiation 

of the electromagnetic waves that accompany the mechanical waves. Interestingly, classical elasto-

dynamic dispersion relations can be obtained also for{ }2 2 2
1, /h k cω= = . 
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In the above result we have{ },p pc c h h= =  for the dilatational waves and{ },s sc c h h= =  for the 

transverse waves. The imaginary wave numbers imply attenuated or evanescent waves which now 

depend on frequency and on the micro-inertial length h. 

 

 

5. Comparison with experimental results 
 

The dispersion relations can be utilized to obtain certain material properties by fitting available 
experimental dispersion curves: equations (3.1) and (3.6) for the acoustical modes and equations 
(3.12) and (3.16) for the optical modes. In case of known material properties the fitting should be 
direct and reasonably accurate. This is shown in Figure 4 where we show the dispersion relations for 
(a) Si (diamond structure) and (b) SrTiO3 (perovskite structure) and for (c) KTaO3 and (b) Ge for 
shear waves. The plots show the frequency ω versus the normalized wave number 0 ≤ ka0/π ≤ 1. The 
experimental results are: for Si from Weber (1977), for SrTiO3 from Yamada and Shirane (1969), 
for KTaO3 from Sahin and Dost (1988), and for Ge from Weber (1974). The most complete set of 
data is available for Ge and KTaO3. The set of obtainable parameters are shown in Table 3. Note that 
the parameter (e44 − f12) as well as (e11 − f11) can only be obtained as an absolute number. 
 
Table 3 Typical material constants calculated from the experimental dispersion curves of Fig. 4 
(shear). 

Property SrTiO3 [100] 90 K KTaO3 [100] 39 K Ge [111] Si  [111] 

a0 (nm) 0.391  0.399  0.566  0.543 

ρ(kg/m3 ) 5174  6970 5360 2330 

c44 = μ(GPa) 122  107 59.4  79.1 

a (108 Nm2/C2 ) 2.12  0.355 75.3  103 

(b44 + b77) 

(10− 9 Nm4 /C2 ) 

2.00  0.435 1.16  1.45 

(e44 − f12) 

(Nm/C=V) 

− 10.0  6.00  (+/-) 8.80  (+/-) 11.0  
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Ωs (THz) 1.46  4.79 9.00  15.5 

cs (m/s) 4856  3910 3538  5827 

hs (nm) 3.07  3.50 1.272 1.503 

ℓs (nm) 2.36  1.66 0.00  0.00  

 

 

6. Plane waves  
 

Let us assume plane displacement waves (of direction d


) propagating with phase velocity c in a 

direction p : 

(x p ct)

(x p ct)

u f d

P g d

= ⋅ −

= ⋅ −

 

 
          (6.1) 

,d p
   are unit vectors and (x p ct), g(x p ct)f ⋅ − ⋅ −

    are arbitrary functions of (x p ct)⋅ −
 . Without loss of 

generality, we will focus on plane problems (parallel to the 3 0x =  plane) and decompose the fields 

according to the dilatation and deviatoric parts as in Giannakopoulos and Rozakis (2020), in the 

absence of body forces and initial electric field): 

3
1 1 2

1 2

3
2 1 2

2 1

3 1 2

( , , )

( , , )

( , , ) 0

Hu x x t
x x

Hu x x t
x x

u x x t

φ

φ

∂∂
= +
∂ ∂

∂∂
= −
∂ ∂

=

          (6.2) 

 
with unknown potentials 1 2( , , )x x tφ  and 3 1 2( , , )H x x t . Accordingly, the polarization vector is: 
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3
1 1 2

1 2

3
2 1 2

2 1

3 1 2

( , , )

( , , )

( , , ) 0

KP x x t
x x

KP x x t
x x

P x x t

χ

χ

∂∂
= +
∂ ∂

∂∂
= −
∂ ∂

=

         (6.3) 

 
with unknown potentials 1 2( , , )x x tχ  and 3 1 2( , , )K x x t . The electric potential is 1 2( , , )x x tΦ = Φ . 
The mechanical dynamic equations (2.25) and (2.26) become: 
 

( )2 2 4 2 2
2

1
p p

p

h
c

φ φ φ φ∇ − ∇ = − ∇           (6.4) 

( )2 2 4 2 2
3 3 3 32

1
s s

s

H H H h H
c

∇ − ∇ = − ∇           (6.5) 

 
The polarization equations (2.27) and (2.28) become: 
 

2 2 4 211 11
2 1

0

1
p

p

e f
c a

χ χ φ
ε −

 −
∇ − ∇ = ∇ + 

         (6.6) 

2 2 4 244 12
3 3 32

1
s

s

e fK K H
c a

− ∇ − ∇ = ∇ 
 

         (6.7) 

 
In the above equations, 2 2 2 2 2

1 2/ /x x∇ = ∂ ∂ + ∂ ∂  is the two-dimensional Laplacian operator, and 
4 2 2 4 4 4 2 2 4 4

1 1 1 2/ 2 / /x x x x∇ =∇ ∇ = ∂ ∂ + ∂ ∂ ∂ + ∂ ∂  is the two-dimensional biharmonic operator. When all 
micro-structural and micro-inertial lengths are zero, reduce to the plane stress classical 
elastodynamic equations, Achenbach (1990). 
 
Substituting (6.1) into (6.4) and (6.6) we obtain for 1d p⋅ = ±

   (motion parallel to the wave 
propagation, i.e. longitudinal wave, + forward and – backward),  
 

2
2 2 2

2
p

p p
p

c c c
h

= ≤


          (6.8) 

 
2

2 2 11 11
2 1

0

p
p p

p

e fg g c f
h a ε −

 −′ ′′′ ′′′− = ±  + 


         (6.9) 
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where ( )′ denotes derivative with respect to (x p ct)⋅ −
 . For ( )

3
1d p× = ±

   (motion normal to the 

wave propagation, i.e. transverse or rotational wave + forward and – backward), 

 
2

2 2 2
2
s

s s
s

c c c
h

= ≤


          (6.10) 

 
2

2 2 44 12
2
s

s s
s

e fg g c f
h a

− ′ ′′′ ′′′− = ±  
 


         (6.11) 

 
Note that  the longitudinal (6.8) and transverse (6.10) velocities of the plane waves were found to 
depend on the corresponding microstructural lengths and are less of equal to the classic plane wave 
velocities. 
 

 
 

6.1 Time-harmonic plane waves 
 

Let us now consider time-harmonic plane waves by letting the vectors ,d p
   be either real or 

imaginary so that d p real⋅ =
  . The functions f and g particularize to: 

 

Aexp[ik(x p t)]

exp[ik(x p t)]

f
k

g B
k

ω

ω

= ⋅ −

= ⋅ −





         (6.12) 

 

 where A and B are real or imaginary constants with ,Ad real Bd real= =
 

and k the wave number 

(complex in general). Denote by kcω = the circular frequency (real), related to a time period 2 /π ω .  

 

Replacing (6.12) in (6.4) and (6.5), we obtain: 
 

2 2 2
2

2 2

1
1

p
p

p p

k
c

k h k
ω  +  =     +   


           (6.13) 

 
for the longitudinal waves and 
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2 2 2

2
2 2

1
1

s
s

s s

kc
k h k
ω  +  =    +   

            (6.14) 

 
for the transverse waves. These results are the same as (3.1) and (3.6). 

Replacing (6.12) in (6.9) and (6.11), we obtain: 

 

 ( )2 2 211 11
1

0

1 p
e fB k A
a

ω
ε −

 −
+ =  + 
          (6.15) 

 

which is the same as (3.12) for the longitudinal waves.  

Replacing (6.12) in (6.10) and (6.12), we obtain: 

 

( )2 2 244 121 s
e fB k A

a
ω− + =  

 
          (6.16) 

 

which is the same as (3.16) for the transverse waves.  
 

 

7. Flexoelectric metamaterials 
 

The previous analysis has been based on the assumption the dielectric susceptibility is positive 0χ > , 
hence 0a > . This assumption seems to be true for all known homogeneous dielectrics. The positive 
value of susceptibility leads to the fact that the ratios of the microinertial to the microstructural 

lengths is greater than one, / 1, / 1s s p ph h≥ ≥  . This result stems from eqs. (2.30) and (2.31).   

 
However, Verlago (1968) pointed out the possibility of negative electric susceptibility 0χ < , 
hence 0a < , but it was realized that at the time there was no such materials, natural of artificial. In 
recent years, synthetic materials have appeared that show negative electric susceptibility and have 
been termed as diaelectric metamaterials, see for example Koo (2015). Optical metamaterials can be 
considered as flexoelectric metamaterials which can be regarded as effective media with 
simultaneously negative electric permittivity and negative magnetic permeability and thus an 
effectively negative refractive index, Lu et al (2009). In such cases, eqs. (2.30) and (2.31) indicate 

that / 1, / 1s s p ph h< <  . This possibility for flexoelectric materials was realized first by 

Giannakopoulos and Zisis (2020). Other flexoelectric metamaterials can be composites of dielectric 
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matrix with aligned metal fibres (see for example related reviews of Padilla et al (2006) and Smith 
et al (2004)). 
 

The first generation of optical negative index metamaterials were constructed from a printed (shadow 

mask/etching) circuit board material of fiber glass, with regular arrays of copper split-ring resonators 

(SRR) (see, for example, Shelby et al.(2001)). The SRR concept was originally introduced by 

Pendry et al. (1999): the two metal micro-rings form the inductances and the two slits as well as the 

gap between the two rings form the capacitors, with the electric field being parallel to the SRR plane. 

Negative refractive index of metal–dielectric composites has been suggested by Kildishev et al. 

(2006), with a simple structure consisting of a periodic array of identical gold strips. Clearly, it is not 

the scope of the present work to include all the research that has been carried out with respect to the 

field of composite optical metamaterials. It suffices to point that these composites include ever 

smaller metal particles in various dielectric matrices (mainly plastics), which are to be used in high-

frequency applications. 

 

The longitudinal (6.8) and transverse (6.10) velocities of the plane waves was found to depend on the 

corresponding microstructural lengths and are less than or equal to the classic plane wave velocities 

because the micro-inertial lengths are greater than or equal to the micro-structural length. The 

opposite effect is expected when we encounter flexoelectric metamaterials in which case the micro-

inertial lengths are less than the micro-structural length. 

 

Figure 5a shows the normalized plot of the mechanical modes, implied by eqs. (3.1) and (3.6) for 

the case of flexoelectric metamaterials / 1, / 1s s p ph h≥ ≥  . Figure 5b shows the normalized plot 

of the optical modes, implied by eqs. (3.12) and (3.14). The normalized wave number is ,k kh p s= . 

The suffix p,s denotes dilatational and shear part accordingly. The normalized frequency for the 
mechanical modes is , ,/p s p sh cω ω= . The normalized frequency for the optical modes is 

,/ p sω ω= Ω . Note the anomalous dispersion curves that appear (comparing with the results of 

Fig.1). 
 
Figure 6a shows the normalized mechanical phase velocity / kω , as a function of the normalized 
wave number k  for the case of flexoelectric metamaterials. Figure 6b shows the normalized optical 

phase velocity / kω , as a function of the normalized wave number k  for the case of flexoelectric 
metamaterials. Figure 7a shows the normalized mechanical group velocity / dkdω , as a function of 
the normalized wave number k . Figure 7b shows the normalized optical group velocity /d dkω , as 
a function of the normalized wave number k .   
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Regarding the mechanical phase velocity, we observe the analogy with the phase velocity that is 
encountered in the dynamic behavior of a Zener type (standard) viscoelastic model, Carcione 
(2007). Viscoelasticity shows anomalous dispersion curves like the ones shown by the flexoelectric 
metamaterials. The phase velocity /phc kω=  for the simple shear wave traveling in the standard 

viscoelastic solid, normalized by the shear wave speed  sc  is given by (Carcione (2007)) 
 

1( / k) Re
1s

i
c i

ε

σ

ωτω
ωτ

 +
=  + 

         (7.1) 

 

where 1i = − , ω  is the frequency, k is the wave length and 0ε στ τ≥ > are the relaxation times. It is 

easy to show that the analogy with eq. (3.7) requires 

 

1s

sh
σ

ε

τ
τ

= ≥


                      (7.2) 

 

Therefore the flexoelectric metamaterial model is analogous to the Zener viscoelastic model, with eq. 

(7.2) describing the parameter equivalence. 

 

8. Conclusions 
 

We have extended our flexoelectric analysis an investigated the dispersion relations and found that 

for each, dilatational and shear, mechanical types of waves, two coupled branches appear: an 

acoustic and an optical one that approximate well the experimental results for many flexoelectric 

materials. The dispersion relations are affected strongly by the two microstructural lengths. These 

dispersion relations are not expected in classical elasto-dynamics where the absence of internal 

lengths leads to no dispersion relations. Moreover we have investigated the role of the group velocity 

as a velocity of energy transport and showed that it also has dispersive character, in contrast to the 

classic case that shows no dispersion (group velocities are identical to the phase velocities). A 

notable similarity with the classic elasto-dynamics is that the plane waves are also partitioned to 

longitudinal and transverse waves with distinct dispersion relations and group velocities. The present 

results fall back to the classic results in absence of the flexoelectric related microlengths. An optical 

branch of the dispersion relation appears due to the polarization field that follows the mechanical 
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field. The longitudinal and transverse velocities of the plane waves was found to depend on the 

corresponding microstructural lengths and are less than or equal to the classic plane wave velocities. 

 

Dispersion relations that look like the ones found in this work resemble dispersion of structural wave 

guides like circular cylinders and plates when investigated by classic elasto-dynamics. In the later 

cases the characteristic lengths are macroscopic dimensions of waveguides like the cylinder radius 

and the plate thickness. It should be made clear that the present theory should investigate such wave 

guides and quantify the competition between the macroscopic length scales with the present 

microscopic length scales 

 

The dispersion relations were found to correlate well with available experimental results where the 

acoustic branches are always accompanied with the optical branches. These branches were found 

with the present models and although they may not be fully adequate, they serve well as good 

approximations. 

 

An interesting analogy has been established between viscoelastic models and flexoelectric 

metamaterials. Flexoelectic metamaterials accept negative sign of the dielectic constant 

(accompanied by a similar change of sign of the magnetic permeability) and could lead to anomalous 

dispersion curves, just as the ones predicted by the vicoelastic models. The analogy is based on the 

ratio of the microstructural vs the microinertia lengths that correspond to the characteristic times of 

the viscoelasticity (creep/relaxation). 

 

The results are important for all dielectrics such as ceramics, ice, perovskites and polymers that 

exhibit strong flexoelectric effect, often uncoupled from piezoelectricity (centrosymmetric 

materials). However, the results also apply to nano-composite and atomistic models that can be 

approached in the context of couple stress elasticity. In such cases, the origin of the micro-structural 

and micro-inertial lengths is very different that the one proposed in this work.  

 

Appendix. The group velocity as an energy transport velocity 

In this Appendix we show that the mechanical group velocities (eq. (3.26)) are the velocities of the 

transfer of the time average of the power per unit area to the twice the time average of the kinetic 
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energy across the plane of a time-harmonic plane wave (longitudinal and transverse) that travel 

inside the body. The time average over a period of the power per unit area of the advancing plane is: 

2 /

02
i

i i i j i ij j
j

ut u r p p E P dt
x

π ωω
π

 ∂
℘ = − + +  ∂ 

∫
         (A.1) 

where 

, ( ) ( )i ij j kji k j l l j k kji j kji kt p p D n p p D pσ τ τ τ= − + − , ( ) /j jk j k kD p p xδ= − ∂ ∂     (A.2) 

i kji k jr p pτ=            (A.3) 

0
,ij ijkl l k ijkl kl ijE b P e bε= + +          (A.4) 

The corresponding time average of the internal energy density and kinetic energy density is 

2W T T+ =  in the absence of energy dissipation. The time average of the kinetic energy is: 

2 /

0

1
2 2 i iT u u dt

π ωω ρ
π

 =  
 ∫            (A.5) 

Then, the velocity of the energy transport by plane time-harmonic waves ec  is defined as: 

2 eT c℘ =            (A.6) 

Without loss of generality we utilize the results of Section 6.1 and replace them in the above 

equations. After a lengthy but straightforward algebra, we obtain for the longitudinal waves: 

( ) ( ) ( )( ) ( )1/2 1/2 1/2 3/22 2 2 2 2 2 2 2 2 2 2 21 1 1 1e p p p p p p p pc c k h k c k h k k h k
− − −

= + + + − + +     (A.7) 

and 

( ) ( ) ( )( ) ( )1/2 1/2 1/2 3/22 2 2 2 2 2 2 2 2 2 2 21 1 1 1e s s s s s s s sc c k h k c k h k k h k
− − −

= + + + − + +      (A.8) 

for the tangential waves. These results are identical with the group velocity results found in eqs. (3.3) 

and (3.8) respectively. Thus, for the mechanical dispersion relations  

,
e

p s

dc
dk
ω =  

 
           (A.9) 
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Figures 

 

Figure 1a Normalized plot of the mechanical modes, implied by eqs. (3.1) and (3.6). The normalized 

frequency is , ,/p s p sh cω ω=  and the normalized wave number is ,k kh p s= . The suffix p,s denote 

dilatational and shear part. 
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Figure 1b Normalized plot of the optical modes, implied by eqs. (3.12) and (3.14). The normalized 

frequency is ,/ p sω ω= Ω  and the normalized wave number is ,k kh p s= . The suffix p,s denote 

dilatational and shear part. 
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Figure 2a Normalized mechanical phase velocity / kω  , as a function of the normalized wave 

number k . The normalization is as in Fig. 1. 
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Figure 2b Normalized optical phase velocity / kω  , as a function of the normalized wave number k . 

The normalization is as in Fig. 1.  
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Figure 3a Normalized mechanical group velocity / dkdω  , as a function of the normalized wave 

number k . The normalization is as in Fig. 1. 
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Figure 3b Normalized optical group velocity /d dkω  , as a function of the normalized wave 

number k .   
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Figure 4 The dispersion relations for (a) Si (diamond structure) and (b) SrTiO3 (perovskite structure) 

and for (c) KTaO3 and (b) Ge for shear waves. The plots show the frequency ω versus the 

normalized wave number 0 ≤ ka0/π ≤ 1. The experimental results are: for Si from Weber (1977), for 

SrTiO3 ([111] shear) from Yamada and Shirane (1969), for KTaO3 from Sahin and Dost (1988), and 

for Ge from Weber (1974).  
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Figure 5a Normalized plot of the mechanical modes, implied by eqs. (3.1) and (3.6) for the case of 

flexoelectric metamaterials / 1, / 1s s p ph h≥ ≥  . The normalized frequency is , ,/p s p sh cω ω=  and 

the normalized wave number is ,k kh p s= . The suffix p,s denote dilatational and shear part. 
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Figure 5b Normalized plot of the optical modes, implied by eqs. (3.12) and (3.14) for the case of 

flexoelectric metamaterials / 1, / 1s s p ph h≥ ≥  . The normalized frequency is ,/ p sω ω= Ω  and the 

normalized wave number is ,k kh p s= . The suffix p,s denote dilatational and shear part. 
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Figure 6a Normalized mechanical phase velocity / kω , as a function of the normalized wave 

number k  for the case of flexoelectric metamaterials / 1, / 1s s p ph h≥ ≥  . The normalization is as 

in Fig. 4. 
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Figure 6b Normalized optical phase velocity / kω , as a function of the normalized wave number k  

for the case of flexoelectric metamaterials / 1, / 1s s p ph h≥ ≥  . The normalization is as in Fig. 4.  
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Figure 7a Normalized mechanical group velocity / dkdω , as a function of the normalized wave 

number k  for the case of flexoelectric metamaterials / 1, / 1s s p ph h≥ ≥  . The normalization is as 

in Fig. 4. 

 

Figure 7b Normalized optical group velocity /d dkω , as a function of the normalized wave 

number k  for the case of flexoelectric metamaterials / 1, / 1s s p ph h≥ ≥  .  The normalization is as 

in Fig. 4. 

 

 


